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Cascaded Filtering Using the Sigma
Point Transformation

Mohammed Shalaby , Charles Champagne Cossette , Jerome Le Ny , and James Richard Forbes

Abstract—It is often convenient to separate a state estimation
task into smaller “local” tasks, where each local estimator esti-
mates a subset of the overall system state. However, neglecting
cross-covariance terms between state estimates can result in over-
confident estimates, which can ultimately degrade the accuracy
of the estimator. Common cascaded filtering techniques focus on
the problem of modelling cross-covariances when the local estima-
tors share a common state vector. This letter introduces a novel
cascaded and decentralized filtering approach that approximates
the cross-covariances when the local estimators consider distinct
state vectors. The proposed estimator is validated in simulations
and in experiments on a three-dimensional attitude and position
estimation problem. The proposed approach is compared to a naive
cascaded filtering approach that neglects cross-covariance terms, a
sigma point-based Covariance Intersection filter, and a full-state
filter. In both simulations and experiments, the proposed filter
outperforms the naive and the Covariance Intersection filters, while
performing comparatively to the full-state filter.

Index Terms—Sensor fusion, distributed robot systems.

I. INTRODUCTION

S TATE estimation is an integral part of technologies that use
measured data to make decisions. For example, state estima-

tion is used in time synchronization of clocks at the nanosecond
level, and autonomous spatial navigation of quadcopters. For
complex systems, augmenting all the required states into one
monolithic state estimator can become laborious, inconvenient,
or even infeasible due to computational or bandwidth limita-
tions. Therefore, the ability to split the state estimation task
into many different estimators is desirable [1]–[6]. For example,
multi-robot systems would benefit from each robot having a
local estimator, and large complex systems would ideally have a
set of interconnected and specialized estimators, also known as
cascaded estimators. Such modularity allows the independent
design, analysis, tuning, debugging, and testing of each state
estimator, in addition to providing architectural clarity. More
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Fig. 1. A block diagram of the architecture of a cascaded filter at time-step k.
The estimator ofx2 is independent from the estimator ofx1, while the estimator
of x1 uses x̂2

k−1 and x̂2
k as a measurement.

efficient computing capability is also possible as smaller state
vectors can be considered in a parallel framework.

To be able to use cascaded filtering approaches, the problem
of modelling the cross-covariance between the estimates of the
different filters must be addressed [1], [7]–[9]. Consider an
attitude and heading reference system (AHRS) providing an
attitude estimate to a position estimator, where the AHRS is the
feeding filter and the position estimator is the receiving filter, as
depicted in Fig. 1. Any error in the AHRS results in an error in
the position estimator, because sensors such as an accelerometer
rely on attitude information when used for position estimation.
Therefore, the estimation error of the attitude estimate and the
position estimate are correlated. Assuming the attitude estima-
tion error is uncorrelated with the position estimation error is
equivalent to neglecting the fact that the attitude information is
not entirely new, thus resulting in an overconfident estimate [4],
[10]. In this letter, a state estimator is said to be consistent if
its calculated error covariance does not underestimate the true
error covariance. The approach of neglecting cross-covariances
is common [2], [5], [6], [11], but can lead to divergence of the
state estimate as a consequence of the filter inconsistency [1],
[7], [9].

To accommodate cross-covariances, a master filter is pro-
posed in [7], [8] named the Federated filter, that takes as input
the output of all the local, sensor-specific filters, and fuses the
estimates using a least squares algorithm. This is extended in
[12] to nonlinear systems, by designing the master filter to be an
unscented Kalman filter (UKF) [13, Section 5.6]. A more recent
modification of the Federated filter is an optimal sample-based
fusion algorithm discussed in [14]. Another popular fusion algo-
rithm is Covariance Intersection (CI), introduced in [9], where
a convex combination of the means and covariances of different
estimates of the same unknown produces a consistent fused
mean and covariance. This involves the selection of weighing
parameters, and in [15], the authors address the optimal choice
of weights in relation to state estimation of dynamical systems.
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A major limitation of all the discussed fusion algorithms is the
focus on scenarios where the local filters share a set of common
states. In [3], a method for computing pose estimates for a
decentralized multi-robot system is presented. However, it is
assumed that relative pose measurements between the robots are
available to reconstruct a common shared state. Lastly, in [16],
two approaches are introduced, one based on the CI method
and another that hinges on solving a linear matrix inequality
problem.

The presentation of a probabilistic approximation of the
propagated cross-covariance terms when the feeding and re-
ceiving filters do not share a common set of states is a novel
contribution of this letter. In particular, a novel cascaded and
decentralized state estimation approach that approximates the
cross-covariance terms using a sigma point transformation is
introduced. Another contribution of this letter is demonstrat-
ing improved performance and consistency in simulation and
experiments when compared to both an estimator that neglects
cross-covariances and a sigma point-based Covariance Intersec-
tion (SPCI) estimator. The simulation and experiments consider
attitude and position estimation but in a decoupled and decen-
tralized manner.

The remainder of this letter is organized as follows. Prelimi-
naries are presented in Section II. The cascaded filtering problem
is formulated in Section III, where a probabilistic analysis of the
approximate prior and posterior distributions of the receiving
filter is also given. The proposed algorithm is presented in
Section IV, and is then evaluated in simulations in Section V
and in experiments in Section VI.

II. PRELIMINARIES

In this letter, x ∼ N (μ,Σ) is used to denote a Gaussian ran-
dom variablexwith meanμ and covariance matrixΣ. The nota-
tion (̌·) and (̂·) denotes the predicted and measurement-corrected
state estimates, respectively. The superscripts (·)i are indices,
not exponents. Lastly,Σab is used to denote the cross-covariance
matrix between vectors a and b, and the following notation is
used for special cross-covariance matrices,

P̌i
k � Σx̌i

kx̌
i
k
, P̂i

k � Σx̂i
kx̂

i
k
, P̌1,2

p,q � Σx̌1
px̂

2
q
, P̂1,2

p,q � Σx̂1
px̂

2
q
.

A. The Sigma Point Transform

The sigma point transform is a method used to approximate
the nonlinear transformation of a distribution. By generating
a set of sigma points from the a priori distribution and passing
them through the nonlinear function, the newly generated points
are used to approximate the nonlinearly transformed distribution
[13, Section 5.5].

Consider a nonlinear function z = h(x,y), where x ∼
N (x̂, P̂x) ∈ Rp and y ∼ N (ŷ, P̂y) ∈ Rq are mutually uncor-
related random variables. To find the distribution of z using a
sigma point transformation, the random variables are augmented
into one vector v ∼ N (v̂, P̂v) ∈ Rp+q , where

v̂ =

[
x̂
ŷ

]
, P̂v =

[
P̂x 0

0 P̂y

]
. (1)

The next step involves generating the sigma points from (1),
which can be done using different approaches. The spherical
cubature rule [13, Section 6.5] will be used throughout this letter.
Define L � dim(v̂) and the Cholesky decomposition LLT �

P̂v , whereL is a lower-triangular matrix. The spherical cubature
rule results in a total number ofL sigma point pairs, where the ith

pair is defined as si � v̂ +
√
L coli L, si+L � v̂ −√

L coli L.
By unstacking the ith sigma point into the two components xi

and yi, the ith transformed point is zi = h(xi,yi). The new
transformed distribution can then be approximated using the 2L
transformed points through

ẑ =
1

2L

2L∑
i=1

zi, P̂z =
1

2L

2L∑
i=1

(zi − ẑ) (zi − ẑ)T . (2)

B. The Kalman Filter

Consider a discrete-time linear system given by

xk = Ak−1xk−1 +wk−1, wk−1 ∼ N (0,Qk−1) , (3)

yk = Ckxk + νk, νk ∼ N (0,Rk) . (4)

The minimum mean square error (MMSE) estimator ofxk given
past measurements is the Kalman filter [13, Section 4.3], where
the prediction and correction steps are given by

x̌k = Ak−1x̂k−1, (5)

P̌k = Ak−1P̂k−1A
T
k−1 +Qk−1, (6)

x̂k = x̌k +Kk (yk −Ckx̌k) , (7)

Kk = P̌kC
T
k

(
CkP̌kC

T
k +Rk

)−1
, (8)

P̂k = (1−KkCk) P̌k, (9)

with 1 being the identity matrix of appropriate dimensions.

III. CASCADED FILTERING

Consider two discrete-time processes evolving through

x1
k = f1

(
x1
k−1,x

2
k−1,w

1
k−1

)
, (10)

x2
k = f2

(
x2
k−1,w

2
k−1

)
, (11)

where x1
k ∈ Rn1 and x2

k ∈ Rn2 are distinct state vectors, and
wi

k−1 ∼ N (0,Qi
k−1) ∈ R�i represents the process noise as-

sociated with the evolution of xi
k. Additionally, consider two

measurement signals modelled as

y1
k = g1

(
x1
k,x

2
k,ν

1
k

)
, (12)

y2
k = g2

(
x2
k,ν

2
k

)
, (13)

where y1
k ∈ Rm1 and y2

k ∈ Rm2 are distinct measurement vec-
tors, and νi

k ∼ N (0,Ri
k−1) ∈ Rhi represents the measurement

noise associated with yi
k. All process and measurement noise

are assumed to be mutually independent.
In the process models (10) and (11), no inputs are considered

to simplify the derivation of the proposed framework. However,
this can be extended to systems with known inputs, since inputs
in the receiving filter are dealt with in the standard way, and the
approximation to be discussed in Section IV-C still holds when
the feeding filter has inputs.

The standard, full-state filtering approach involves designing
a filter with the augmented state vector xk = [ (x1

k)
T (x2

k)
T ]T ∈

Rn1+n2 , using knowledge of (10)–(13). Meanwhile, the cas-
caded filtering approach separates this problem into two filters,
as shown in Fig. 1. The feeding filter outputs an approximate a
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posteriori distribution of

x2
k

∣∣I2
k ∼ N

(
x̂2
k, P̂

2
k

)
, (14)

whereIi
k = {x̌i

0,y
i
0:k} is an “information” set containing a prior

and measurements, a|b denotes a random variable a conditioned
on b, x̌2

0 ∈ Rn2 is the initial prediction of x2
k, x̂2

k ∈ Rn2 is its
estimate at time-stepk based on (11) and (13), and P̂2

k ∈ Rn2×n2

is the associated covariance matrix. The receiving filter uses
this output alongside (10) and (12) to estimate the a posteriori
distribution of

x1
k

∣∣x̌1
0,y

1
0:k, x̌

2
0,y

2
0:k ≡ x1

k|I1
k , I2

k (15)

without access to I2
k . Naive cascaded filtering [2], [5], [6], [11]

considers the estimate x̂2
k to be a measurement in the receiving

filter. This breaks a requirement for consistency of the Kalman
filter and its descendents, which is the conditional independence
of the measurement from the state and measurement histories
[13, Property 4.2].

A. Receiving Filter Approximate Probability Distributions

When the a posteriori distribution of (14) is known, the goal
is to find a consistent estimator of (15) without access to the
feeding filter’s process model (11), measurement model (13), or
corresponding inputs and measurements. Such a solution allows
the design of an x1 estimator with minimal knowledge of the
inner workings of the x2 estimator.

The propagation ofx1
k is dependent onx2

k−1, and mutual inde-
pendence cannot be assumed. The conditional joint distribution
of x1

k and x2
k−1 is therefore assumed to be[

x1
k

x2
k−1

] ∣∣∣ I1
k−1, I2

k−1

∼ N
⎛
⎝[ x̌1

k
x̂2
k−1

]
,

⎡
⎣ P̌1

k P̌1,2
k,k−1(

P̌1,2
k,k−1

)T
P̂2

k−1

⎤
⎦
⎞
⎠ , (16)

where x̌1
k = f1(x̂1

k−1, x̂
2
k−1,0). This block partitioning follows

from an assumption that the conditional joint distribution is
Gaussian. Using [13, Lemma A.2], (16) gives

x1
k|I1

k−1, I2
k−1,x

2
k−1

∼ N
(
x̌1
k + P̌1,2

k,k−1

(
P̂2

k−1

)−1 (
x2
k−1 − x̂2

k−1

)
,

P̌1
k − P̌1,2

k,k−1

(
P̂2

k−1

)−1 (
P̌1,2

k,k−1

)T
)
. (17)

and since I2
k−1 and x2

k−1 are available only through x̂2
k−1(I2

k−1)

and P̂2
k−1(I2

k−1) in the receiving filter, x2
k−1 in particular is

replaced in (17) with x̂2
k−1 to obtain

x1
k|I1

k−1, x̂
2
k−1, P̂

2
k−1

∼ N
(
x̌1
k, P̌

1
k − P̌1,2

k,k−1

(
P̂2

k−1

)−1 (
P̌1,2

k,k−1

)T
)
.

(18)

In (18), P̂2
k−1 is known and P̌1

k can be obtained using com-
mon filtering techniques. However, P̌1,2

k,k−1 is unknown and is
required to consistently update the estimate of x1

k.

Similarly, an approximation of the distribution of (15) is
derived in Appendix A yielding the correction step equations

x̂1
k = x̌1

k +K1
k

(
y1
k − y̌1

k

)−K1,2
k K2

k

(
y1
k − y̌1

k

)
, (19)

P̂1
k = P̌1

k −K1
kΣ

T
x̌1
ky̌

1
k
−K1,2

k

((
P̌1,2

k,k

)T
−K2

kΣ
T
x̌1
ky̌

1
k

)
,

(20)

P̂1,2
k,k = P̌1,2

k,k −K1
kΣ

T
x̂2
ky̌

1
k
, (21)

where y̌1
k = g1(x̌1

k, x̂
2
k,0) is the predicted measurement, and

K1
k = Σx̌1

ky̌
1
k
Σ−1

y̌1
ky̌

1
k
, K2

k = Σx̂2
ky̌

1
k
Σ−1

y̌1
ky̌

1
k
, (22)

K1,2
k =

(
P̌1,2

k,k −K1
kΣ

T
x2
ky

1
k

)(
P̂2

k −K2
kΣ

T
x2
ky

1
k

)−1

. (23)

The form of the update equation for the cross-covariance matrix
P̂1,2

k,k is from the joint distribution of x1 and x2, given in
the second step of Appendix A. As with the prediction step,
naive cascaded filtering techniques neglect the cross-covariance
components Σx̂2

ky̌
1
k

and P̌1,2
k,k, which appear in (19)–(23). Note

that (19) and (20) are similar to the standard Kalman filter,
except that this new form of the receiving filter also corrects the
feeding filter’s state x2 locally before correcting the state x1.
The updated state of the feeding filter is never communicated
back to the feeding filter, resulting in a loss of performance as
compared to a full estimator.

IV. PROPOSED CASCADED RECEIVING FILTER

The proposed framework requires passing Gaussian distri-
butions through nonlinear process and measurement models,
which is a well-documented problem with a plethora of possible
solutions. In this letter, the sigma point transformation is used
as it is a concise, general approach that is suitable for handling
nonlinearities. Another possible solution is a linearization-based
one, which is further discussed in an extended version of this
letter [17, Appendix C].

In the prediction step, P̂1,2
k−1,k−1 is used to generate sigma

points, which are then propagated forward in time to approxi-
mate P̌1,2

k,k−1. The exact change in the cross-covariance matrix

going from P̌1,2
k,k−1 to P̌1,2

k,k is derived in Section IV-C, and an

approximation is proposed. In the correction step, P̌1,2
k,k is then

used to generate sigma points, which allows computing P̂1,2
k,k.

A. Prediction Step

For prediction, the goal is to propagate the estimate x̂1
k−1

forward in time to get a predicted state x̌1
k. To do so, the process

model (10) and the output of the feeding estimator, x̂2
k−1 and

P̂2
k−1, are used. Initially, P̂1,2

0,0 is set to be the zero matrix, unless
there is prior knowledge of a correlation between the initial
estimates of the local estimators.

The state vectors x1
k−1 and x2

k−1 and the process noise w1
k−1

are augmented into a vector v, with

v̂k−1 =

⎡
⎣ x̂1

k−1
x̂2
k−1
0

⎤
⎦ , (24)
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P̂vk−1
=

⎡
⎢⎣

P̂1
k−1 P̂1,2

k−1,k−1 0(
P̂1,2

k−1,k−1

)T
P̂2

k−1 0

0 0 Q1
k−1

⎤
⎥⎦ . (25)

Let L � dim(v̂k−1), and LLT � P̂vk−1
. Using the spherical

cubature rule [13], define the 2L sigma points s to be

sik−1 � v̂k−1 +
√
L coli L, si+L

k−1 � v̂k−1 −
√
L coli L.

By unstacking each sigma point into

sik−1 =

[(
x̂1
k−1,i

)T (
x̂2
k−1,i

)T (
w1

k−1,i

)T
]T

, (26)

the sigma points are propagated through (10),

x̌1
k,i = f1

(
x̂1
k−1,i, x̂

2
k−1,i,w

1
k−1,i

)
. (27)

Hence, the statistics of the propagated sigma points are

x̌1
k =

1

2L

2L∑
i=1

x̌1
k,i, P̌1

k =
1

2L

2L∑
i=1

(
x̌1
k,i − x̌1

k

) (
x̌1
k,i − x̌1

k

)T
,

P̌1,2
k,k−1 =

1

2L

2L∑
i=1

(
x̌1
k,i − x̌1

k

) (
x̂2
k−1,i − x̂2

k−1

)T
. (28)

B. Correction Step

For the correction step, the goal is to correct the predicted state
x̌1
k using the measurement y1

k, to obtain x̂1
k. As y1

k is a function
of x2

k, the output of the feeding estimator x̂2
k and P̂2

k is required.
As before, the state vectors x1

k and x2
k and the measurement

noise ν1
k are augmented into a vector u, with

ûk =

⎡
⎣ x̌1

k
x̂2
k
0

⎤
⎦ , P̂uk

=

⎡
⎢⎣

P̌1
k P̌1,2

k,k 0(
P̌1,2

k,k

)T
P̂2

k 0

0 0 R1
k

⎤
⎥⎦ . (29)

The problem of finding P̌1,2
k,k in (29) from (28) is addressed in

Section IV-C. Let M � dim(ûk), and MMT � P̂uk
. Conse-

quently, using the spherical cubature rule, define the 2M sigma
points p to be

pi
k � ûk +

√
M coli M, pi+L

k � ûk −
√
M coli M.

By unstacking each sigma point into

pi
k =

[(
x̌1
k,i

)T (
x̂2
k,i

)T (
ν1
k,i

)T
]T

, (30)

the nonlinear transformation of the sigma points as per the
measurement model is

y̌1
k,i = g1

(
x̌1
k,i, x̂

2
k,i,ν

1
k,i

)
. (31)

Hence, the statistics of the propagated sigma points are

y̌1
k =

1

2M

2M∑
i=1

y̌1
k,i, (32)

Σx̌1
ky̌

1
k
=

1

2M

2M∑
i=1

(
x̌1
k,i − x̌1

k

) (
y̌1
k,i − y̌1

k

)T
, (33)

Σx̂2
ky̌

1
k
=

1

2M

2M∑
i=1

(
x̂2
k,i − x̂2

k

) (
y̌1
k,i − y̌1

k

)T
, (34)

Σy̌1
ky̌

1
k
=

1

2M

2M∑
i=1

(
y̌1
k,i − y̌1

k

) (
y̌1
k,i − y̌1

k

)T
. (35)

The filter equations given in (19)–(23) can then be used to obtain
the approximated distribution of the corrected state x̂1

k and its
cross-covariance matrix with the state estimate x̂2

k.

C. Approximating the Effect of the Feeding Filter on the
Cross-Covariance

The cross-covariance matrix P̌1,2
k,k−1 is approximated using

sigma points in the prediction step. However, P̌1,2
k,k is needed to

generate the sigma points for the correction step. If knowledge
of the process and measurement models of the feeding filter is
available, P̌1,2

k,k−1 can be propagated to P̌1,2
k,k analytically. To

elucidate this, consider the linear system

x1
k = A1

k−1x
1
k−1 +B1

k−1x
2
k−1 +w1

k−1, (36)

x2
k = A2

k−1x
2
k−1 +w2

k−1, (37)

y1
k = C1

kx
1
k +D1

k−1x
2
k + ν1

k, y2
k = C2

kx
2
k + ν2

k, (38)

where the state vectors and noise parameters follow the same
notation as in (10)–(13). Moreover, consider for the moment
that each of the process and measurement models in (36)–(38)
are known. Let G2

k ∈ Rn2×m2 denote the Kalman gain of the
estimator of x2

k as per Section II-B, then

P̌1,2
k,k = E

[(
x1
k − x̌1

k

) (
x2
k − x̂2

k

)T ∣∣ I1
k−1, I2

k

]
= E

[(
x1
k − x̌1

k

) (
A2

k−1x
2
k−1 +w2

k−1 −A2
k−1x̂

2
k−1

−G2
kC

2
k

(
A2

k−1x
2
k−1 +w2

k−1

)−G2
kν

2
k

+ G2
kC

2
kA

2
k−1x̂

2
k−1

)T ∣∣ I1
k−1, I2

k

]
= E

[(
x1
k − x̌1

k

) (
x2
k−1 − x̂2

k−1

)T ∣∣ I1
k−1, I2

k

]
× (A2

k−1 −G2
kC

2
kA

2
k−1

)T

= P̌1,2
k,k−1Ψk, (39)

where the assumptions E[(x1
k − x̌1

k)(w
2
k−1)

T
∣∣ I1

k−1, I2
k ] = 0

and E[(x1
k − x̌1

k)(ν
2
k)

T
∣∣ I1

k−1, I2
k ] = 0 have been used, and

Ψk � ((1−G2
kC

2
k)A

2
k−1)

T. Since, however, the estimator of
x1 does not have access to the process and measurement models
of the feeding filter, computing (39) exactly is not possible. If
cooperation from the feeding filter is at all possible, the most
accurate solution is for the feeding filter to share the matrix
Ψk at every time-step, in addition to the estimated distribution
of x2. When this is not possible, however, an alternative is to
approximate Ψk. Using (9), Ψk can be rewritten as

Ψk =
(
P̂2

k

(
P̌2

k

)−1
A2

k−1

)T
. (40)

Once the feeding filter reaches a steady state, P̂2
k(P̌

2
k)

−1 ≈ 1,
yielding the approximation Ψ̂k = (A2

k−1)
T. Hence, with knowl-

edge of what Ψ̂ should be if access to the process model (11) is
available, the user can form an educated guess of the Jacobian
A2. Since the state vector x2 of the feeding filter is known, the
user can reconstruct an approximate (i.e., lower fidelity) process
model for the states of the feeding filter, and use the Jacobian of
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this approximate process model as an approximation of the true
Jacobian of the process model (11) used in the feeding filter.

One possible issue with over-estimating P̌1,2
k,k using this ap-

proximation is that P̂uk
in (29) can become indefinite. There-

fore, at every iteration, the definiteness of P̂uk
must be checked,

and the cross-covariances are to be deflated using a scalar
parameter until the definiteness test passes.

V. SIMULATION RESULTS

The main criteria for evaluating the proposed cascaded filter
is its consistency, which will be done using the normalized
estimation error squared (NEES) test on Monte Carlo runs. The
NEES test involves computing a chi-squared statistic ε̄ using
the error trajectory and corresponding covariance of multiple
trials. If the statistic is below a certain threshold, the hypothesis
that the estimator is consistent cannot be rejected with 95%
confidence [18]. The ±3σ bound test is also considered, and
the root-mean-squared-error (RMSE) is computed to evaluate
the performance of the estimators.

A. Linear System

To elucidate the benefits of the proposed approach, consider
first a toy problem with two discrete-time linear time-invariant
processes evolving through

x1
k = x1

k−1 − x2
k−1 + w1

k−1, w1
k−1 ∼ N (

0, q1
)
, (41)

x2
k = x2

k−1 + w2
k−1, w2

k−1 ∼ N (
0, q2

)
, (42)

where x1
k ∈ R and x2

k ∈ R are distinct states. Additionally,
consider two measurements modelled as

y1k = x1
k + x2

k + ν1k , ν1k ∼ N (
0, r1

)
, (43)

y2k = x2
k + ν2k , ν2k ∼ N (

0, r2
)
, (44)

where y1k ∈ R and y2k ∈ R are distinct measurements.
As before, assume at every time-step k the estimates x̂1

k−1,
x̂2
k−1, x̂2

k, the covariances P̂ 1
k−1, P̂ 2

k−1, P̂ 2
k , and the cross-

covariance P̂ 1,2
k−1,k−1 are known, and the goal is to find the

estimate x̂1
k and its corresponding covariance P̂ 1

k using the
known values, the process model (41), and the measurement
model (43). Using (42), Ψ is set to equal 1, with the definiteness
check in place as per Section IV-C.

Deriving the update equations for x1 yields

x̌1
k = x̂1

k−1 − x̂2
k−1, x̂1

k = x̌1
k +K(y1k − y̌1k),

P̌ 1
k = P̂ 1

k−1 + 2P̂ 1,2
k−1,k−1 + P̂ 2

k−1 + q1,

P̂ 1
k = (1−K)2P̌ 1

k − 2(1−K)KP̌ 1,2
k,k +K2(P̂ 2

k + r1),

where the optimal gain K is

K =
(
P̌ 1
k + P̌ 1,2

k,k

)(
P̌ 1
k + 2P̌ 1,2

k,k + P̂ 2
k + r1

)−1

. (45)

The proposed cascaded filter approximates the cross-covariance
terms P̂ 1,2

k−1,k−1 and P̌ 1,2
k,k , and is evaluated against the naive

approach in [11], to reiterate the importance of modelling cross-
covariances.

To evaluate consistency, 1000 Monte Carlo trials with varying
initial conditions and noise realizations are performed. A naive
estimator that assumes the estimate x̂2

k is independent from the
estimate x̂1

k thinks it has access to more information than it

Fig. 2. Single run of the naive and proposed estimators on the linear system.
Shaded regions correspond to ±3σ bounds. Red, blue, and green correspond
to naive, proposed, and full estimators, respectively. After k = 1000, the ±3σ
bound of the naive and full estimator almost fully overlap.

Fig. 3. The NEES test for 1000 Monte Carlo trials on the linear system,
showing the consistency evaluation of the cascaded estimators.

actually does, resulting in an overconfident estimator. Therefore,
the naive estimator fails both the ±3σ test shown in Fig. 2
and the NEES test in Fig. 3, while the proposed estimator that
accommodates for cross-covariances passes both consistency
checks.

The full estimator is clearly the best performer as it can
perfectly calculate the cross-covariances and update all states
using all measurements. The average RMSE of the proposed
framework is 45% worse than the full estimator, while the
naive estimator is 90% worse. Therefore, this highlights the
importance of addressing cross-covariances to prevent the reuse
of old information in the filter.

B. Nonlinear System

Consider a rigid body navigating 3D space with an onboard
inertial measurement unit (IMU) and an ultra-wideband (UWB)
tag, where the position of the UWB tag p relative to the IMU
z resolved in the body frame Fb is known, and is denoted
rpzb ∈ R3. Additionally, let there be a ρ ∈ N>3 number of UWB
anchors scattered within ranging distance of the UWB tag, thus
providing a noisy position measurement of rpkw

a ∈ R3, which is
the position of the UWB tag relative to some arbitrary point w at
time-stepk, in the absolute frameFa. The simulation parameters
of the system are shown in Table I, and the set-up in Fig. 4.
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TABLE I
SIMULATION PARAMETERS FOR THE NONLINEAR SYSTEM

Fig. 4. The prototype used in simulation and for collection of experimental
data. The UWB receiver is used to obtain position measurements from a system
of UWB anchors.

Using the gyroscope, the magnetometer, and the accelerom-
eter, an AHRS is designed using the invariant extended Kalman
filter (IEKF) [19] framework, where accelerometer aiding fol-
lows a thresholding rule similar to the one considered in [20].
The output of the AHRS is a direction cosine matrix (DCM) esti-
mate Ĉab ∈ SO(3) that gives the relation ra = Ĉabrb̂, where ra
and rb̂ are the same arbitrary vector resolved in Fa, the absolute
frame, and Fb̂, the estimated body frame, respectively. The
corresponding covariance matrix P̂AHRS ∈ R3×3 is also made
available by the AHRS.

The position estimator has access to the position measurement
y ∈ R3 and the accelerometer measurement ub ∈ R3 resolved
in the body frame Fb. The state vector of the position estimator
is

x(t) =

[
rzwa (t)
vzw
a (t)

]
, (46)

where rzwa (t) ∈ R3 is the position of the IMU relative to the
arbitrary pointw resolved inFa, andvzw

a (t) ∈ R3 is the velocity
of the IMU relative to the point w with respect to Fa, resolved
in Fa. The corresponding process model is

ṙzwa (t) = vzw
a (t), (47)

v̇zw
a (t) = Cab(t) (ub(t)−wb(t)) + ga, (48)

wherewb ∈ R3 denotes white Gaussian process noise, andga ∈
R3 is the gravitational acceleration vector resolved in Fa. The
discrete-time measurement model is

yk = rzkwa +Cabkr
pkz
b + νak

, (49)

where νa ∈ R3 denotes white Gaussian measurement noise.
This set-up has inputs in both feeding and receiving filters.

Note that due to the presence of a moment-arm between the
IMU and the position sensor, and since the accelerometer mea-
surements are obtained in the body frame Fb, cross-covariances
develop between the states of the AHRS and the position esti-
mator. Through knowledge of (47)–(49), rpzb , and the output of
the AHRS, the goal is to design a consistent position estimator.
Four approaches are considered. They are

Fig. 5. A box plot showing the median RMSE, outliers, and variation of
different estimators over 500 Monte Carlo trials.

TABLE II
RMSE OF THE ESTIMATORS AVERAGED 500 TRIALS

Fig. 6. The NEES test results for the 500 Monte Carlo trials, showing the
consistency of the proposed estimator.

1) an AHRS and a naive sigma point Kalman filter, where
cross-covariances are neglected,

2) an AHRS and the proposed sigma point-based filter,
where Ψ̂ is the identity matrix as per Section IV-C,

3) an AHRS and a sigma point-based Covariance Intersection
(SPCI) filter, and

4) a full sigma point Kalman filter that augments the state
vector x(t) with the attitude states Cab(t).

The SPCI filter used is a sigma point extension of [16], and is
designed in a similar way to the proposed framework. The main
difference is that instead of approximating the cross-covariances
to compute (25) and (29), the estimated covariance matrices
P̌1, P̂1, and P̂2 are inflated as per the CI approach, and the
cross-covariances are assumed to be zero. This involves tuning
an additional scalar parameter. More details on this approach are
given in [17, Appendix B].

For the full sigma point Kalman filter, the geodesic L2-mean
discussed in [21] is used for computing means and covariances
on SO(3), which are required for sigma point transformations
with attitude states. The results of the full sigma point Kalman
filter are used as the baseline best possible performance, but in
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Fig. 7. The error trajectories associated with the slow-pace experimental run for the 4 position estimators, and the AHRS. The AHRS is shared by all 3 cascaded
estimators. The shaded regions correspond to the ±3σ bounds, and the colour of each error trajectory and covariance region are the same.

practice would be computationally heavy, inflexible, and even
impossible for larger systems.

The computational overhead of the proposed framework is
not significantly different from a naive SPKF or the SPCI
filter, as all the considered cascaded estimators use sigma point
transformations and a similar set of equations. Additionally, a
more computationally efficient linearization-based approach is
possible as shown in [17, Appendix C].

To evaluate the 4 estimators, 500 Monte Carlo trials are
performed, each 60 seconds long with varying initial conditions
and noise realizations. A summary of the position RMSEs is
given in Fig. 5 and Table II. The proposed estimator clearly
outperforms both the SPCI and naive estimators, even though all
3 estimators share the same AHRS. As expected, the proposed
cascaded filter also passes the consistency test, as shown in
Fig. 6.

The proposed framework provides a 35.9% worse position
estimate than the full estimator even though the provided attitude
estimates are 61.1% worse. The worse attitude estimates are due
to the UWB measurements correcting the attitude states in the
full estimator, but not in cascaded architectures as discussed in
Section III. However, the loss of performance is compensated
by the modularity, computational gain, and flexibility of the
proposed cascaded filter.

VI. EXPERIMENTAL RESULTS

Experimental data is collected for the nonlinear system dis-
cussed in Section V-B using the prototype shown in Fig. 4. The
IMU data is collected using a Raspberry Pi Sense HAT at 240 Hz,
and the position measurements are collected at 16 Hz using the
Pozyx Creator Kit, which is a UWB-based positioning system.
Five UWB anchors communicate with a UWB tag placed on the
body 84 cm away from the IMU. This is complemented with
ground truth data collected using an OptiTrack optical motion
capture system at 120 Hz.

Three datasets are tested using the four estimators discussed in
Section V-B. Each run involves moving the rigid body randomly
in a volume of approximately 5 m × 4 m × 2 m while recording
the IMU, UWB, and ground truth data. The main difference
between the three datasets is the pace at which the robot is moved
around and rotated.

The ±3σ bound error plots for the 4 estimators on the slow
pace experiment are shown in Fig. 7, and an RMSE-based com-
parison on the three datasets is shown in Table III. As expected,

TABLE III
RMSE OF THE DIFFERENT ESTIMATORS ON 3 EXPERIMENTAL RUNS

Fig. 8. The logarithm of the KL divergence measure associated with the slow-
pace experimental run. The KL divergence is computed between the estimated
distribution of each cascaded estimator and the full estimator.

the naive cascaded filter performs poorly, while the performance
of the proposed cascaded filter beats the SPCI approach and is
comparable to the full estimator. Not only does the proposed
framework achieve a lower position RMSE, but it is also less
conservative as compared to the SPCI. This is further displayed
in Fig. 8, where the KL divergence [22, Chapter 9] measure
shows that the estimated distribution of the proposed estimator
is closer to that of the full estimator, which is the best available
estimate of the true distribution.

Due to imperfectly calibrated hardware, further unmodelled
phenomena such as indoor magnetic perturbations, and nonlin-
earities of the system, the AHRS in the slow-pace experiment
takes over 15 seconds to achieve near steady-state conditions, as
shown in Fig. 7. Additionally, the AHRS performs poorly par-
ticularly in the fast pace experiment, as shown in Table III. How-
ever, the proposed framework still achieves a performance com-
parable to the full estimator, which shows that the approximation
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discussed in Section IV-C is reasonable, even for such complex
systems. Additionally, the worse attitude estimates as compared
to the simulation runs means that the cross-covariances between
the AHRS and the position estimator are more significant, which
is why the naive estimator performs so poorly. This emphasizes
the significance of the proposed estimator, particularly when
estimation error is persistent in the feeding filter.

VII. CONCLUSION

In this letter, the importance of modelling cross-covariances
in cascaded estimation is addressed, and a novel approach is
introduced using a sigma point transformation. The main con-
tribution is the probabilistic approximation of the propagation
of cross-covariance terms when the local filters do not estimate
a common set of states. The proposed approach is compared
to the naive filtering approach and a Covariance Intersection
filter approach both in simulation and in experiment. Superior,
consistent results are achieved for both a linear and a nonlinear
problem. Comparable performance to a full non-cascaded esti-
mator is also achieved, but with all the advantages of cascaded
filtering such as improved flexibility and reduced computational
complexity.

APPENDIX

The conditional joint distribution of x1
k,x

2
k,y

1
k

∣∣I1
k−1, I2

k is
assumed to be Gaussian according to

N

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎣
x̌1
k

x̂2
k

y̌1
k

⎤
⎥⎥⎦,

⎡
⎢⎢⎢⎢⎢⎣

P̌1
k P̌1,2

k,k Σx̌1
ky̌

1
k(

P̌1,2
k,k

)T
P̂2

k Σx̂2
ky̌

1
k

ΣT
x̌1
ky̌

1
k

ΣT
x̂2
ky̌

1
k
Σy̌1

ky̌
1
k

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

.

Using [13, Lemma A.2] to condition on y1
k as well, the condi-

tional joint distribution of x1
k,x

2
k

∣∣I1
k , I2

k is given by

N
([

x̌1
k +Σx̌1

ky̌
1
k
Σ−1

y̌1
ky̌

1
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(
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k − y̌1
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1
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1
k

(
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k − y̌1

k

)
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,

[
P̌1
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ky̌

1
k
Σ−1
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ky̌

1
k
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x̌1
ky̌

1
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1
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1
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1
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1
k
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x̂2
ky̌

1
k

])
.

Using [13, Lemma A.2] again, and by replacing the conditioning
on I2

k using x̂2
k(I2

k) and P̂2
k(I2

k) as was done in Section III, the
distribution of x1

k|I1
k , x̂

2
k, P̂

2
k is given by

N
(
x̌1
k +Σx̌1
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1
k
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.

Therefore, the filter equations using a Bayesian approach are
given by (19)–(23).
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