
3728 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 4, APRIL 2024

DIVE: Deep Inertial-Only Velocity Aided
Estimation for Quadrotors

Angad Bajwa , Charles Champagne Cossette , Member, IEEE,
Mohammed Ayman Shalaby , Graduate Student Member, IEEE, and James Richard Forbes

Abstract—This letter presents a novel deep-learning-based solu-
tion to the problem of quadrotor inertial navigation. Visual-inertial
odometry (VIO) is often used for quadrotor pose estimation, where
an inertial measurement unit (IMU) provides a motion prior. When
VIO fails, IMU dead reckoning is often used, which quickly leads
to significant pose estimation drift. Learned inertial odometry
leverages deep learning and model-based filtering to improve upon
dead reckoning. Efforts for quadrotors, however, rely on sensors
other than, or in addition to, an IMU, or have only been proven on
a specific set of trajectories. The proposed generalizable approach
regresses a 3D velocity estimate from only a history of IMU mea-
surements, and the learned outputs are applied as a correction to
an on-manifold Extended Kalman Filter. The proposed algorithm
is shown to be superior to the state-of-the-art in learned inertial
odometry. A 42% improvement in localization accuracy is shown
over the state-of-the-art on an in-distribution testing set, and a
22% improvement is shown on an out-of-distribution testing set.
Additionally, the proposed algorithm shows a 43% improvement
over dead reckoning in VIO failure scenarios.

Index Terms—Localization, deep-learning methods, aerial
systems: perception and autonomy, inertial state estimation.

I. INTRODUCTION

MULTIROTORS are versatile vehicles that offer a low-
cost, maneuverable, and highly-controllable platform for

a variety of applications. Generally, multirotors are operated by
a human pilot with some sort of absolute positioning system,
such as the Global Positioning System (GPS). In recent years,
large strides have been made to commercialize autonomous
multirotor navigation in GPS-denied environments using Visual-
inertial and LiDAR-inertial odometry (VIO/LIO) [1], [2]. VIO,
in particular, is able to achieve near-centimeter localization accu-
racy [3], and requires only a camera and an inertial measurement
unit (IMU), which are both low-cost and lightweight sensors.
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Fig. 1. Position estimation during a 6 s period of VIO failure by DIVE (blue)
and IMU dead reckoning (red). The proposed algorithm shows significantly less
drift than the baseline, and is able to generate accurate velocity estimates even
without exteroceptive corrections.

Including an IMU instead of estimating purely from camera
egomotion is useful as it allows for a completely proprioceptive
backup when visual odometry (VO) fails, such as in low-
texture environments and scenarios with occlusions or motion
blur.

IMU-based dead reckoning, while accurate in the short term,
is prone to long-term drift due to intrinsic IMU error and time-
varying bias. To this end, significant effort has been made to
improve the accuracy of inertial-only odometry, with particular
success for pedestrian and ground-vehicle estimation [4], [5].
Pedestrians and ground-vehicles have repetitive motion patterns
and strong dynamic constraints that can be exploited to yield a
generalizable inertial odometry algorithm that is comparable in
long-term accuracy to VIO.

Multirotors, however, are far less dynamically constrained
compared to ground vehicles and do not show as much repetitive
motion as pedestrians. As such, it is difficult for inertial-only
multirotor navigation approaches to match VIO’s accuracy. The
research into improving inertial-only odometry for multirotors
has involved other sensors in addition to the IMU [6], or has
been trajectory specific [7]. In this work, a novel learned inertial
navigation algorithm is proposed that is generalizable to any
multirotor with an IMU. The proposed IMU-only algorithm
couples an on-manifold Extended Kalman Filter (EKF), which is
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propagated by the inertial measurements, with a convolutional
neural net (CNN) based module. The CNN takes a history of
orientations and linear accelerations and outputs an inferred
velocity in the gravity-aligned frame, which is then used as a
correction to the filter’s state estimate.

The main contributions of this letter are
� a model for obtaining an inferred velocity from a history

of orientations and linear accelerations using a CNN,
� a novel solution to the learned inertial odometry problem

that fuses the inferred velocity from the CNN using an EKF,
and

� an approach that is largely generalizable to any multirotor
with an IMU.

The proposed algorithm, Deep Inertial-Only Velocity Aided
Estimation (DIVE), avoids the complexity of stochastic cloning
present in other IMU-only learned inertial approaches [4], [7]
by learning the absolute velocity element of the extended pose,
rather than learning a relative pose constraint. The proposed
algorithm outperforms the SOTA in inertial-only odometry for
multirotors, considered TLIO [4] herein. Improved performance
is seen on an in-distribution testing set and out-of-distribution
testing set, as well as outperforming standard dead reckoning in
VIO failure scenarios.

II. RELATED WORK

VIO is a well-explored topic in the literature, and is the
de-facto standard for multirotor navigation in GPS-denied en-
vironments [1]. While extremely information-rich, aggressive
multirotor flight can cause VIO to fail due to motion blur and
textureless environments. In moments of failure, the navigation
algorithm relies on its proprioceptive data, which is provided by
the IMU. However, the standard practice during periods of VIO
failure without any egomotion constraints or tracked features
(before a successful reinitialization) is to propagate the state
forward using the IMU kinematics in a dead-reckoned fashion,
which allows for unconstrained 6DOF motion and does not
leverage the multirotor’s kinematics and dynamic constraints.

Learned inertial odometry has shown significant progress in
pedestrian and ground-vehicle navigation. Pedestrian dead reck-
oning (PDR) has seen significant focus due to its strong motion
prior, where algorithms such as RoNIN [8] regress velocity from
gravity-aligned IMU measurements for position estimation in
2D via concatenation. Meanwhile, RIDI [9] uses a regressed
velocity to correct a window of linear accelerations for position
estimation via double integration. TLIO [4] exceeds the accuracy
of both algorithms using a 1D residual CNN that regresses a
relative-position constraint in the gravity-aligned frame, which
is then applied as a correction to an EKF.

RINS-W [5] and AI-IMU [10] both use deep learning to
leverage the dynamic constraints of a ground-vehicle. RINS-W
proposes training a long short-term memory network (LSTM)
motion-profile classifier that is used to select between different
corrections that represent the common dynamic constraints of a
ground-vehicle, as well as integrating a zero velocity detector,
further described in [11]. AI-IMU Dead Reckoning, in a similar
spirit, forms the dynamic constraints into a regression problem
using a CNN to learn the covariance on a zero lateral and upwards
velocity pseudomeasurement.

DIDO [6] and [12] use tachometers in addition to an IMU
for multirotor state estimation. DIDO uses motor speeds and
IMU measurements as inputs to a large recurrent network model,

Fig. 2. Block diagram of the overall system. The CNN takes as input the
history of orientations and linear accelerations provided by the data buffer and
outputs an inferred velocity, which is used to update an EKF.

where residual CNNs are leveraged to learn IMU biases and a
correction on the quadrotor thrust model, and gated recurrent
units (GRUs) are used to learn integration error. IMO [7] uses
collective thrust and gyroscope histories as inputs to a tempo-
ral convolutional network (TCN) to regress a relative-position
constraint, but has only been proven on drone-racing paths and
cannot generalize to unseen trajectories. This is due to the fact
that the network output is a displacement in the world-frame,
meaning that the TCN learns a set of inertial paths, and any
deviation from these paths will result in a poor estimate. Both
DIDO and IMO present TLIO as the inertial SOTA, showing
that TLIO is generalizable to multirotor flight despite being
formulated for PDR.

III. METHODOLOGY

There are two primary components of the proposed algorithm:
a CNN-based learning model, and an EKF that fuses the output
of the CNN with a 6DOF process model for extended pose and
bias estimation. A block diagram of the overall system is shown
in Fig. 2.

The learning model is a residual CNN [13]. The network
inputs are a history of orientations and linear accelerations in the
past Δt seconds from some time tk. These inputs are generated
from the IMU measurements and the EKF’s current orientation
and bias estimates. The network outputs an inferred velocity
ṽk
g at time tk, and the learned uncertainty Σ̃k

v . The inferred

velocity ṽk
g and uncertainty Σ̃

k

v , being treated as an uncertain
measurement, are used to correct an EKF prediction, where the
EKF prediction is generated using the IMU data. The CNN
has no initial velocity prior, and is made to infer a motion
prior from the multirotor’s kinematics and dynamics. The EKF
then outputs an extended pose estimate, which includes the 3D
position, velocity, and orientation, as well as the gyroscope and
accelerometer bias estimates.

A. Reference Frames

The frame Fa represents the inertial frame, the frame Fb

represents the body frame, and the frame Fg represents the
gravity-aligned frame. The frame Fg is constructed by rotating
the inertial frame about the gravity direction by the same yaw
angle as the body frame. Cab ∈ SO(3) represents the direction
cosine matrix (DCM) that transforms Fb to Fa. Given one
physical vector resolved in either Fa or Fb, the relationship
between the components is ra = Cabrb. The DCM Cab can
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also be written as

Cab =
[
b1
a b2

a b3
a

]
,

where

bi
a =

[
biax biay biaz

]T
, i ∈ {1, 2, 3}

are the basis vectors defining Fb, resolved in Fa. Similarly, Cag

represents the transformation from Fg to Fa, and is represented
by

Cag =
[
g1
a g2

a g3
a

]
.

The gravity-aligned frame Fg is defined such that its first axis is
b1
a projected onto the horizontal plane, its third axis is colinear

with the gravity vector, and the second axis completes the triad.
Mathematically,

g1
a =

[
b1ax b1ay 0

]T
∥∥∥[b1ax b1ay 0

]T∥∥∥
2

,

g3
a = [0 0 1]

T
, g2

a =
(
g3
a

)×
g1
a,

Alternatively, Cag can be obtained from the yaw angle γ with

γ = arccos

⎛
⎝ b1ax√

(b1ax)
2 +

(
b1ay

)2
⎞
⎠ = arctan2(b1ay, b

1
ax),

Cag = exp
(
[0 0 γ]

T×)
= C3(γ), (1)

where exp(·) is the matrix exponential, (·)× describes the skew-
symmetric cross product matrix, and C3(·) denotes a principal
DCM about the third axis.

In the remainder of this letter, prior and posterior estimated
quantities are denoted by (̌·) and (̂·), respectively. Measured
quantities are denoted by (̃·).

B. Residual CNN Model

The residual CNN model is a residual network that takes a
history of orientations in the form of rotation vectors and linear
accelerations as six 1-dimensional channels. The input then
proceeds through multiple convolutional and fully-connected
layers in a lightweight form of ResNet18 [13].

The desired orientation input is a history of estimated DCMs
Ĉi

gb that describe the transformations from the body frame to
the gravity-aligned frame, where i corresponds to the indicies
between tk −Δt and tk. The inertial window length Δt is a
hyperparameter chosen during training to balance between tem-
poral correlation and available information, as further discussed
in Section V-B. Given an orientation estimate Ĉk

ab at time tk,
Ĉk

ag can be retrieved from (1), and Ĉk
gb = ĈkT

agĈ
k
ab. During

training, Ĉk
ab is supplied by ground-truth, but in deployment,

it is supplied by the EKF. The desired orientation history can be
computed by propagating Poisson’s equation backwards using
the gyroscope measurements, denoted by ω̃k

b . Letting τ be
tk − tk−1, Ĉk−1

ab is then computed by

Ĉk−1
ab = Ĉk

ab exp
(
τ ω̃k−1×

b

)T
.

Ĉk−1
gb is then retrieved as

Ĉk−1
gb = ĈkT

agĈ
k−1
ab , (2)

and this can be repeated until the entire rotational history from
tk −Δt to tk is obtained. Note that in (2), Ĉk

ag is fixed at time tk

since the gravity-aligned frame Fg at the most recent timestep
is chosen as the anchor frame to maintain yaw unobservability,
as done in [4]. It is also found that this choice of anchor frame
helps in learning the dynamics, and reduces the size of the output
space. The accelerometer measurements are transformed into
linear accelerations resolved in the gravity-aligned frame Fg.
Let α̃k

b denote the accelerometer measurement at time tk and
Ĉk

gb denote the DCM at time tk computed using (2). The linear
acceleration input is then computed as

akg = Ĉk
gbα̃

k
b − γg,

where γg = γa, and γa is the gravity vector resolved in Fa.
The corresponding rotation vectors are then generated from the

orientation history by φ̂
k

gb = log(Ĉk
gb)

∨, where (φ×)∨ = φ and

log(·) is the matrix logarithm. The vectors akg and φ̂
k

gb are then
concatenated to form the input at time tk, and this process is
repeated to generate a full input history from tk −Δt to tk. The
network then outputs an inferred velocity ṽk

g . Instead of using
perfect data during training, ground-truth body-frame angular
velocity and proper accelerations are augmented with white
noise, axis misalignment, and a small bias. Doing so is intended
to robustify the model to noise and errors in bias estimation, and
to encourage the learning to be IMU-agnostic and avoid learning
device-specific bias evolution. At runtime, the IMU samples are
interpolated to the target frequency, and then proceed through
the gravity-alignment to form the network input.

Following the convolutional layers, the network contains two
separate fully-connected layers that output ṽk

g , the inferred

velocity, and Σ̃
k

v , the covariance. The network is trained until
convergence with mean-squared-error (MSE) loss,

LMSE(v
k
g , ṽ

k
g ) =

1

N

N∑
k=1

∥∥vk
g − ṽk

g

∥∥2 ,
where vk

g is the ground-truth velocity in the gravity-aligned
frame. Upon convergence, training continues with the negative-
log-likelihood (NLL) loss,

LNLL(v
k
g , ṽ

k
g , Σ̃

k

v)

=
1

N

N∑
k=1

(
1

2

(
vk
g − ṽk

g

)T
Σ̃

k−1

v

(
vk
g − ṽk

g

)
+

1

2
ln|Σ̃k

v |
)
,

in order to converge to the uncertainty present in the data, as
suggested in [14]. The network is therefore trained to output an

associated covariance Σ̃
k

v = diag(σ̃k
v), where σ̃k

v ∈ R3, which
is used in the estimation loop. This two-step learning process is
motivated by the fact that training with NLL does not converge
if not preceded by MSE.

C. Inertial Model Odometry

1) Filter Propagation: An on-manifold EKF is implemented
that operates on the SE2(3) Lie group, described in [15]. The
vehicle extended pose is

T =

⎡
⎣C v r

0 1 0

0 0 1

⎤
⎦ ∈ SE2(3),
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where C ∈ SO(3) and v, r ∈ R3.
The full filter state is represented by X̂ = (T̂, β̂g, β̂a) ∈

SE2(3)× R6, where T̂ is the estimated extended pose, β̂g

is the estimated gyroscope bias, and β̂a is the estimated ac-
celerometer bias. The error state is then defined as δX =
[δξT δβT

g δβT
a ]

T ∈ R15.
The generic continuous-time inertial navigation equations are

used to propagate the filter’s state, which are

Ċab = Cab(t) (ω̃b(t))
× , (3)

v̇a = Cab(t)α̃b(t) + γa, (4)

ṙa(t) = va. (5)

(3)–(5) can also be written in compact form as

Ṫ = GT+TU, (6)

and assuming that the IMU measurements ω̃b(t), α̃b(t), without
bias and noise, are constant over a small integration interval τ ,
(6) can be discretized as in [16, Section 9.4.7] to yield

Tk = exp (τG)Tk−1 exp (τU) = Gk−1Tk−1Uk−1. (7)

The discrete-time bias evolution is

βk
g = βk−1

g , βk
a = βk−1

a . (8)

The complete linearized discrete-time process model is then
written as

δX̌ k
= Fk−1δX̂ k−1

+Gk−1δwk−1, (9)

where wk−1 ∼ N (0,Qk−1),Qk−1 is the noise covariance de-
termined by the intrinsic IMU noise parameters, and Fk−1 and
Gk−1 are the state and noise jacobians, respectively. The state
covariance is then propagated by

P̌k = Fk−1P̂k−1Fk−1T +Gk−1Qk−1Gk−1T. (10)

2) Filter Update: The output of the network is defined as
the velocity resolved in the local gravity-aligned frame, denoted
as ṽk

g . Treating the inferred velocity ṽk
g as a measurement, the

measurement function can then be written as

ṽk
g = h

(X k,ηk
v

)
= CkT

agv
k
a + ηk

v , (11)

where ηk
v is assumed to be normally distributed according to

N (0, Σ̃
k

v), and Σ̃
k

v is the associated covariance output by the
network. The measurement Jacobian with respect to the state
can then be written as Hk, and the state update equations are

Kk = P̌kHkT
(
HkP̌kHkT + Σ̃

k

v

)−1

, (12)

δX̂ k
= Kk

(
ṽk
g − h

(X̌ k
))

, (13)

δX̂ k
=

[
δξ̂

kT

δβ̂
kT

g δβ̂
kT

a

]T
,

X̌ k = (Ťk, β̌
k
g , β̌

k
a),

T̂k = exp(δξ̂
k∧
)Ťk, (14)

β̂
k

g = β̌
k
g + δβ̂

k

g , β̂
k

a = β̌
k
a + δβ̂

k

a, (15)

P̂k = (1−KkHk)P̌k, (16)

where exp((·)∧) defines the mapping from R9 → SE2(3), and
(·)∧ is the wedge operator for SE2(3) as defined in [16, Section

9.2.4]. In practice, the network uncertainty Σ̃
k

v is inflated to
compensate for unmodelled temporal cross correlations, which
is shown to be effective in [17]. This is further discussed in
Section V-B.

D. Training and Data Specifications

The neural network is trained on a PC with an Intel Core
i9-12900 K processor with 16 cores, and a NVIDIA GeForce
RTX3070 graphics processing unit. The bias applied to an
inertial window of ground-truth IMU measurements for training
is generated from a uniform distribution of [−1−2, 1−2] rad

s and
[−5−2, 5−2] m

s2 . The axis misalignment norm is generated from
a uniform distribution of [0, 5] deg. The white noise parameters
for an inertial window are generated from a uniform distribution
of [6−3, 2−2] m

s2
1√
Hz

and [1−3, 2−3] rad
s

1√
Hz

. The network is
trained with LMSE for 10 epochs, and then switched to LNLL
for convergence, which takes around another 5 epochs at a
learning rate of 10−4. Training takes about one hour when
using approximately 3 hours of flight data collected at 400Hz.
DIVE has approximately 8 million trainable parameters, and an
inference time of 5.48 ms on an NVIDIA GeForce GTX 1650
with Max-Q. For comparison, TLIO has approximately 6 million
trainable parameters, and an inference time of 5 ms. Note that,
for all presented experiments, the network update rate is 10 Hz.

IV. EXPERIMENTS

Three sets of experiments are run to validate the proposed
algorithm. The first two use only the proposed algorithm to nav-
igate a set of trajectories with a near-perfect state initialization,
and contain both an in-sample testing set that is split from the
same dataset as the training data, and a generalization test, which
contains a completely unseen IMU and quadrotor. The third
experiment is a VIO failure test that compares the proposed
algorithm to standard dead reckoning given a near-perfect bias
initialization at the beginning of a failure period.

A. Datasets

The training and in-sample testing sets are taken from the
DIDO dataset [6]. DIDO is dynamically diverse, long-form, and
contains high-frequency ground truth, which makes it suitable
for training. The proposed methodology of synthesizing ground-
truth IMU measurements and augmenting with noise and bias
helps prevent overfitting to IMU intrinsics, but the dynamic
mapping of the network is still dependent on mass and physical
structure. DIDO assembled a custom drone for data acquisition.

The Blackbird and EuRoC datasets are chosen to test cross-
dataset generalization. The Blackbird dataset is chosen as it has
highly-varying velocity and high-frequency ground truth [18].
Blackbird also assembles a custom drone for data acquisition,
and has an IMU frequency of 100 Hz, as compared to the
400 Hz IMU frequency of DIDO, allowing for validation that
the proposed algorithm functions even with upsampled data and
a different physical system. The EuRoC dataset is chosen as it
provides a complete batched ground truth, allowing for testing
with an accurate initial bias estimate. Additionally, the faster
trajectories are dynamic enough to induce motion blur and test
estimation under VIO failure cases. EuRoC uses the AscTec
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Firefly as it’s flight platform, and has an IMU frequency of
200 Hz [19].

B. Algorithm Performance

Having introduced the testing datasets, the performance of
the proposed algorithm is compared to TLIO [4], the learned
inertial SOTA. An overview of TLIO is given in Section II.

1) Accuracy Study: The proposed algorithm and TLIO are
trained on a subset of trajectories from the DIDO dataset that are
chosen for their diversity of movement. The testing trajectories
are conceptually similar but unseen to the algorithm at training
time. A 75/15/10 split is used for testing/training/validation,
and there are 127 training trajectories, 26 validation trajectories,
and 12 testing trajectories. Evaluating the relative error is useful
as it is less time-sensitive than absolute error [20], and provides
more information about the localized drift, which is more in the
spirit of inertial navigation. Instead of absolute error, relative
pose error (RPE) is used, which is a measure of the localized drift
of the estimate over a particular time period Δτ , as presented
in [20], [21]. For some period Δτ , which represents some state
interval Δ, the RPE is computed as

TΔ =
(
Tk−1

Tk+Δ
)−1 (

T̂k−1

T̂k+Δ
)
, (17)

where Tk is the ground-truth pose at timestep k, and T̂k is
the estimated extended pose at timestep k. The individual error
values are then retrieved from the components of TΔ as

RPEtrans =
1

n−Δ

n−Δ∑
i=1

∥∥riΔ∥∥2 , (18)

RPEvel =
1

n−Δ

n−Δ∑
i=1

∥∥vi
Δ

∥∥2 , (19)

RPErot =
1

n−Δ

n−Δ∑
i=1

∥∥∥log (Ci
Δ

)∨∥∥∥2 . (20)

In the results presented, Δτ is chosen to be 2 seconds.
Both TLIO and the proposed algorithm are tested on DIDO

with a highly uncertain initial bias estimate of zero, and an
otherwise perfect state initialization. The results are shown in
Fig. 3, and an example of a testing trajectory is shown in
Fig. 5(a). The proposed algorithm shows a 42% improvement in
RPEtrans and a 62% improvement in RPEvel relative to TLIO.
As direct integration of the gyroscope provides an accurate
rotational estimate without additional information, the RPErot
is similarly low for both. Overall, DIVE shows significantly
improved performance over TLIO in both translational drift and
velocity estimation, indicating that the velocity constraint is a
superior learned mapping to the relative position constraint for
multirotors.

2) Generalization Study: The Blackbird and EuRoC trajec-
tories represent the cross-dataset generalization test for the pro-
posed algorithm. All Blackbird trajectories provide a 3-second
stationary period prior to flight for initialization of gyroscope
bias. Both TLIO and the proposed algorithm are initialized
with a highly uncertain zero accelerometer bias estimate, and
a near-perfect gyroscope bias estimate. EuRoC provides a com-
plete batched ground truth, so both TLIO and the proposed
algorithm are initialized with an accurate extended pose and bias

Fig. 3. Relative Pose Errors on DIDO testing trajectories by TLIO and DIVE.
The width of the envelope shows the relative frequency of the data. The median
is represented as a white dot, and the first and third percentile of the data are
represented by the thick black bar.

Fig. 4. Relative Pose Errors on Blackbird and EuRoC trajectories by TLIO
and DIVE.

estimate. The results are shown in Fig. 4. The proposed algorithm
outperforms TLIO by 22% and 18% in RPEtrans on Blackbird and
EuRoC, respectively, and the RPErot is similarly low for both.
The results of the study show that DIVE is able to generalize well
to various physical systems with upsampled data from a different
IMU, indicating that the velocity regression mapping can be
applied to both hexrotors and quadrotors if learned on a different
flight platform. Lastly, DIVE outperforms TLIO in translational
accuracy on both datasets, indicating that the velocity constraint
maintains its superiority in the generalized case.

3) VIO Failure Study: In the preceding sections, it is demon-
strated that the proposed algorithm outperforms the chosen
learned inertial SOTA, TLIO, in relative pose error in both
in-distribution and out-of-distribution tests. However, it is also
useful to consider the proposed algorithm’s application as a
replacement for the inertial component of a VIO system upon
failure. The failure case that will be considered for this study is
an immediate VIO failure where no exteroceptive corrections are
applied to the system for some failure period. Generally, when
this occurs, the proprioceptive backup is standard dead reckon-
ing, which is the baseline to which the proposed algorithm is
compared. It is assumed that, as VIO contains a complementary
set of sensors, that the sensor bias estimates are accurate at the
beginning of the failure period. The DIDO testing trajectories are
used for this study, where noisy and biased IMU measurements
are synthesized from ground-truth body-frame angular velocity
and proper acceleration in a similar method to Section III-D. The
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Fig. 5. Visualization of a DIDO flight trajectory as estimated by TLIO and
DIVE.

results are shown in Fig. 6. The proposed algorithm demonstrates
a 3%, 42%, 63% and 65% improvement in absolute position drift
over standard dead reckoning for 3, 4, 5 and 6 s failure period
lengths, respectively. A visualization of the baseline vs proposed
performance during a VIO failure is shown in Fig. 1.

V. NETWORK STUDIES

A. EKF Ablation Study

In order to validate the contribution of the EKF, the ac-
curacy of the network inferred velocity and the a posteriori
velocity estimates are compared. This was done by applying
a yaw-correction to both the inferred velocity in the local
gravity-aligned frame v̄g , and the a posteriori velocity in the

Fig. 6. Translational drift during VIO failure periods by DIVE and standard
dead reckoning.

Fig. 7. Velocity error norms from both the yaw-corrected network inferred
velocity v̄a and the yaw-corrected a posteriori velocity v̂a.

estimated body frame v̂b, and then comparing the error to the
ground-truth velocity. The results are shown in Fig. 7. The a
posteriori velocity shows a 34% improvement in velocity error
over the inferred velocity, demonstrating the importance of the
information fusion provided by the EKF in the estimation loop.
The improvement likely comes from the high accuracy of the
standard IMU propogation model in the short-term and and more
consistent state estimates due to it’s fusion with the inferred
velocity using its learned uncertainty.

B. Window Length Study

The noise and bias augmentation applied in Section III-D
prevents the proposed algorithm from overfitting to the noise
intrinsics of the IMU used in the training and validation datasets.
However, overfitting to the nature of the training trajectories is
still possible. Learning velocity from shorter input windows is
more generalizable as there are less possible distinct trajectories.
At one extreme, learning to regress velocity from a single IMU
sample would be maximally generalizable as the motion is
simple and commonly occuring. At the other extreme, learning
to regress velocity from a 10 s input window is minimally
generalizable as that trajectory will not occur often, and will
likely cause the network to overfit to that specific motion.

A hyperparameter study on the input window length, rep-
resented by Δt in Section III, is conducted to show that the
algorithm is not overfitting to the training trajectories. In this
study, the CNN is trained on different input window lengths
of {0.5, 1, 1.5, 2.5, 3.5} seconds. Then, the CNN is put in the
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TABLE I
MEAN RELATIVE POSE TRANSLATIONAL ERROR (M) ACHIEVED BY DIVE ON

DIDO AND BLACKBIRD AS A FUNCTION OF THE INPUT WINDOW LENGTH

estimation loop with the EKF to measure its performance.
The results are shown in Table 1. Overall, as the algorithm’s
input window length increases, its performance on the DIDO
dataset (used for training) improves, but its performance on
the Blackbird dataset degrades. As the input window grows
even larger, performance on both falls significantly below the
baseline. This shows that there is some degree of overfitting to
the nature of the trajectory itself, as the model learns to take
advantage of the additional information provided by the longer
input window length, but is unable to apply that same learning
to the Blackbird dataset, as the flight patterns are inherently
different. Additionally, at longer window lengths, the temporal
correlation of measurements increases, and without a way to
scale the covariance accordingly, this likely contributes to the
degradation in performance. Therefore, in order to train a gener-
alizable model, it is important to choose a shorter input window
length. However, shortening the window length too much can
result in a lack of data by which to regress an inferred velocity. To
balance this, a window length of 1 s is chosen for the experiments
presented in this work.

VI. DISCUSSION AND CONCLUSION

In this letter, the problem of learned inertial estimation for
quadrotors has been addressed by proposing a novel algorithm,
DIVE. DIVE regresses a velocity estimate from a history of
IMU-derived inputs and applies it as a correction to an EKF
formulated on SE2(3). DIVE is then evaluated against TLIO on
the DIDO, Blackbird, and EuRoC datasets, and shows significant
improvement in localization accuracy on all, indicating the
superiority of the inferred velocity mapping to the relative posi-
tion constraint for both in-dataset accuracy and generalizability.
Additionally, DIVE is evaluated against dead reckoning in VIO
failure scenarios, showing significantly less translational drift.

This work poses a deep learning architecture that is limited
in accuracy by the amount of data that it is trained on. Given
the generalizability of the proposed model, it is believed that by
open-sourcing the source code and training data, DIVE can be

continually improved by training on additional quadrotors and
trajectories.
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