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Abstract— Multi-robot systems must have the ability to
accurately estimate relative states between robots in order to
perform collaborative tasks, possibly with no external aiding.
Three-dimensional relative pose estimation using range mea-
surements oftentimes suffers from a finite number of non-
unique solutions, or ambiguities. This paper: 1) identifies and
accurately estimates all possible ambiguities in 2D; 2) treats
them as components of a Gaussian mixture model; and 3)
presents a computationally-efficient estimator, in the form of
a Gaussian-sum filter (GSF), to realize range-based relative
pose estimation in an infrastructure-free, 3D, setup. This
estimator is evaluated in simulation and experiment and is
shown to avoid divergence to local minima induced by the
ambiguous poses. Furthermore, the proposed GSF outperforms
an extended Kalman filter, demonstrates similar performance
to the computationally-demanding particle filter, and is shown
to be consistent.

I. INTRODUCTION

The relative pose, denoting the relative position and at-
titude between robots, needs to be accurately estimated to
realize autonomous multi-robot tasks. Relative pose informa-
tion between the robots allows for tasks such as collaborative
mapping, collision avoidance, and formation control. Sensors
such as cameras with object-detection ability [1] or LiDARs
[2] can satisfy the relative pose estimation requirement, but
they are computationally expensive.

Ultra-wideband transceivers, or UWB tags, are small, in-
expensive range sensors providing approximately 10 cm ac-
curate range (distance) measurements between a pair of tags
for relative position estimation. Inter-robot range data from
these tags, fused with other sensor data, enable infrastructure-
free robot localization. For instance, relative robot poses can
be estimated by fusing velocity estimates from visual-inertial
odometry (VIO) with range measurements from a single tag
on each robot [3]. This method requires the robots to be in
persistent relative motion [4–8] or in periodic line-of-sight
of the cameras for visual recognition, which is not possible
in a forest environment, for example.

Multiple tags can be installed on each robot for relative
position estimation [9–12]. In fact, placing two UWB tags
per robot ensures “local observability” [13], thus overcom-
ing the persistent relative motion requirement for position
estimation using an extended Kalman filter (EKF) [13, 14].
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This setup combined with an interoceptive IMU or velocity
readings allow for infrastructure-free relative pose estimation
in 3D. However, even with two tags per robot, the range
measurements yield multiple solutions for relative robot
poses, referred to as “discrete” ambiguities, which are not
addressed in [13].

These ambiguities form a multi-modal distribution of
relative poses that the estimator must account for. Adding
more UWB tags per robot reduces the number of ambiguities
at the cost of the tags not communicating at their highest data
rate. In fact, even with three strategically-positioned tags,
only relative robot positions can be disambiguated, while
relative attitude still remains ambiguous. Therefore, for a
range-based approach, designing estimators that can handle
these ambiguities is of great importance.

In the face of ambiguities, Gaussian-based filters, such
as an EKF, can perform poorly since they assume that the
distribution is unimodal [15]. A particle filter (PF) can handle
a multi-modal distribution [16–18], but it is computationally
expensive due to the need for many particles to describe
the multi-modality [19]. Range-based localization of the
ambiguous position of one robot with three static anchors
in 2D has been addressed using a Gaussian-sum filter (GSF)
in [20]. Additionally, signal map measurements often exhibit
multi-modality while tracking multiple targets [21], and a
Gaussian mixture model (GMM) helps isolate the “true”
measurement for a particular target. In this paper, the ideas
presented in [20, 21] are extended to design a localization
solution involving a Gaussian-sum filter (GSF) where the
“true” relative pose between multiple robots is identified
among the ambiguous poses in 3D. Unlike [20], this solution
only uses two UWB tags per robot, no static anchors,
and provides a complete 3D pose estimation solution that
includes both position and attitude.

As such, the key contributions of this paper are as follows.
• Identification of all the possible ambiguous relative

poses between N robots using a geometric approach is
presented. The geometric estimates are fed into a least-
squares estimator to form a GMM of ambiguous relative
poses in 3D. These estimates are used to initialize a GSF
to identify the “true” relative pose. Since this GSF is
only initialized at the ambiguous poses, it contains the
minimum number of Gaussian components required to
model the multi-modal state.

• To the best of the Author’s knowledge, this is the
first work where a GSF is used for anchor-free, range-
based 3D relative pose estimation between robots in the
presence of ambiguities.
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• In simulations and experiments, the proposed estimator
involving the GSF is shown to have a similar perfor-
mance to the PF, while, as expected, being orders of
magnitude faster.

The remainder of this paper is organized as follows.
The notation and preliminaries are defined in Section II.
The problem formulation is in Section III and the GSF is
discussed in Section IV. The ambiguous pose estimation
procedure for initializing the GSF is presented in Section
V. The estimator is validated in simulation and experiment
in Sections VI and VII, respectively.

II. NOTATION AND PRELIMINARIES

Consider N robots or rigid bodies, where each robot is
equipped with two ranging tags, resulting in a total of 2N
tags collectively, as shown in Fig. 1a. The tags are located
at physical points τ1, . . . , τ2N on the robots. A measurement
graph G = (V, E) denotes the inter-tag range measurements.
The nodes V = {1, . . . , 2N} are the set of tag IDs and
the edges E denote the set of inter-tag range measurements.
The bolded 1 and 0 are appropriately-sized identity and zero
matrices, respectively.

An orthonormal reference frame Fp is attached to each
robot, where p = 1, . . . , N are the robot IDs. Fg is defined
as a common global reference frame, and w is a static
point. The position of a chosen reference point in Robot
p relative to point w, resolved in Fp is denoted rpwp ∈ Rn,
and the robot’s translational velocity with respect to another
arbitrary reference frame Fc is denoted vpw/c

p ∈ Rn. Vectors
resolved in different frames are related by the transformation,
rpwp = Cpqrpwq , where Cpq ∈ SO(n). The angular velocity
of Fp relative to Fq resolved in Fc is denoted ωpq

c . The
relative pose between Robots p and q is

Tpq =

[
Cpq rqpp

0 1

]
∈ SE(n), (1)

where SE(n) is the special Euclidean group in n dimensions.
The special Orthogonal group in n dimensions is denoted
SO(n). The exponential map of SE(n) is denoted exp :
se(n) → SE(n), where se(n) is the Lie algebra of SE(n).
The “wedge” operator is denoted (·)∧ : Rm → se(n), and
the “vee” operator is (·)∨ : se(n) → Rm. The adjoint matrix
is denoted Ad : SE(n) → Rm×m and is defined in [22,
Pg. 324]. The a⊙ operation is given in [22, Pg. 310].

III. PROBLEM FORMULATION

The poses of all the robots are expressed relative to
Robot 1, which is the arbitrarily-chosen reference robot. The
state of the system is defined as,

x = (T12, . . . ,T1N ) ∈ SE(n)N−1. (2)

With δξp ∈ Rm, δx = [δξT2 · · · δξTN ]T ∈ Rm(N−1), the ⊕
operator is defined as

x ⊕ δx = (T12 exp(δξ
∧
2 ), . . . ,T1N exp(δξ∧N )). (3)

The objective is to accurately estimate the state x. For this,
the interoceptive measurements are each robot’s angular and

translational velocities as resolved in its body frame, denoted
as

up = [ωpgT
p vpw/gT

p ]T + wp ∈ Rm, wp ∼ N (0,Qp),

where wp is zero-mean Gaussian noise with covariance Qp.
The relative pose between Robots 1 and p at time-step k is

T1pk
= T−1

g1k
Tgpk

=
(
exp(−∆tu∧

1k−1
)T−1

g1k−1

)(
Tgpk−1

exp(∆tu∧
pk−1

)
)

≜ f(T1pk−1
,u1k−1

,upk−1
), (4)

where ∆t = tk−tk−1 is the time interval. The relative poses
T1pk

, p = 2, . . . , N, collectively form the state xk.
Meanwhile, a range measurement between Tags i and j

in Robots p and q respectively, is modelled as

yij(xk) =
∥∥DT1pk

r̃τipp − DT1qk r̃τjqq

∥∥+ ηij , (5)

where D = [1 0], r̃ = [rT 1]T, || · || is the Euclidean norm,
and ηij ∼ N (0, σ2

ij). The augmented measurement vector is

yk = gk(xk) + ηk = [· · · yij(xk) · · · ]T + ηk ∈ R|E|,

∀(i, j) ∈ E ,ηk ∼ N (0,Rk), (6)

where Rk = diag(. . . , σ2
ij , . . .).

Estimating the state x of a multi-robot system with two
tags per robot is non-trivial. As shown in Fig. 1b, in this
setup, there is a finite set of discrete relative poses or
ambiguities that correspond to the same range measurements.
These ambiguities will be referred to as modes in the paper.
In 2D, the two obvious ambiguities are modes 1 and 2 since
the range measurements are equal in both the modes. Given
noisy range measurements, when y1i ≈ y1j and y2i ≈ y2j ,
there is a likelihood of “flip” ambiguities occurring, where
tags τi and τj swap their positions, yielding modes 3 and
4. These modes present an issue for estimator initialization
when robots are static, as there is no motion to disambiguate
the multiple modes.

τ1 τ2

1

τ3 τ4

τ5 τ6

2

3

(a) Problem setup
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τ
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(b) Ambiguous relative poses

Fig. 1. (a) Problem setup for a two-tag multi-robot system, where each
robot is equipped with Tags τi and τj . Without loss of generality, the pink
robot, defined as Robot 1, is considered to be the reference robot.
(b) Visualization of all the possible ambiguous relative poses between robots
1 and p. The relative pose in mode 1 is the “true” pose and modes 2, 3,
and 4 are ambiguities. The range measurements are y1i, y1j , y2i, and y2j .



The multi-modal state representing this system can be
estimated using a GSF. The GSF is typically initialized
by sampling from either a uniform distribution of all pos-
sible states or a Gaussian distribution based on the prior
knowledge. With limited prior knowledge, both methods can
require many Gaussian components in the GSF. In this paper,
a Gaussian component is assigned per ambiguous pose in 2D,
which are denoted as modes in Fig. 1b, to form a GMM that
captures the state’s multi-modality effectively. This GMM
is used to initialize a GSF that isolates the “true” mode
when the robots are in motion and avoids divergence to
new ambiguities in-flight, which allows accurate and efficient
state estimation. This novel initialization method minimizes
the number of Gaussian components required in the GSF,
thus improving computational efficiency.

To initialize the GSF using the proposed GMM, given the
challenge posed by measurement noise, a two-step solution is
undertaken. Firstly, analytical geometric derivations are used
to evaluate all ambiguous poses in 2D as a preliminary guess.
Secondly, this guess is refined through a nonlinear least-
squares algorithm to get a more accurate estimate. These
methodologies are discussed in Section V.

IV. GAUSSIAN-SUM FILTER

The GSF is a Bayesian filter that approximates the state
distribution by a weighted sum of Gaussian probability
density functions [23]. The GSF consists of M EKFs, each
initialized with an equal weightage at a different initial
state, x̌(i)0 and covariance, P̌(i)

0 , i = 1, . . . ,M , such that∑M
i=1 w

(i)
0 = 1. Each of these EKFs is referred to as a mode

of the GSF.
The evaluation of the modes of the GSF is done using an

EKF prediction and correction step, which are detailed in
[22]. The process and measurement models are given in (4)
and (6), respectively. The process model Jacobian, A(x), and
the measurement model Jacobian, H(x), are given in Section
IV-A and Section IV-B, respectively.

The EKFs are run in parallel and the posterior density at
time-step k is represented as a Gaussian sum of M modes,
with the ith mode weighted using w

(i)
k . The primary feature

of the GSF is that when a new measurement yk is received,
the weights are updated by comparing the measurement with
the predicted measurement of each mode, which is given by

y̌(i)k = g(x̌(i)k ), (7)

where, x̌(i)k is the predicted states of the ith mode. If a mode’s
predicted value y̌(i)k closely matches yk, it is more likely to
be responsible for the observation and thus receives a higher
weight and vice versa. As shown in [23], the weights quantify
the probability of a measurement being associated with each
mode, and are updated as

w
(i)
k =

w
(i)
k−1N (yk; g(x̌(i)k ),S(i)

k )∑M
i=1 w

(i)
k−1N (yk; g(x̌(i)k ),S(i)

k )
, (8)

where S(i)
k is the covariance matrix of the predicted measure-

ment of the ith mode. The mean estimate of the GSF is a

weighted average of the estimates in all the modes, while the
covariance is assumed as the covariance of the max-weighted
mode since the objective is to detect the true Gaussian mode.
They are given by,

x̂k =
∑M

i=1 w
(i)
k x̂(i)k and P̂k = P̂(i)

k , i = argmaxi w
(i)
k .

For a detailed derivation of the GSF, refer to [24].

A. Process Model Jacobian

Let T1p = T̄1p exp(δξ
∧), where T̄1p ∈ SE(n), and

δξ ∈ Rm is small. Replacing T1pk
and T1pk−1

by this
approximation into (4) and left-multiplying both sides by
T̄−1
1pk

yields

exp(δξ∧k ) = exp(−∆tu∧
pk−1

) exp(δξ∧k−1) exp(∆tu∧
pk−1

).

Given, exp((Ad(T)δξ)∧) ≡ T exp(δξ∧)T−1 [22], it follows
that δξk = Ad(exp(−∆tu∧

pk−1
))δξk−1. Based on [25],

Df(T1pk−1
,u1k−1

,upk−1)

DT1pk−1

= Ad(exp(−∆tu∧
pk−1

)). (9)

Thus, Ak−1(x) a block-diagonal matrix in R(m×m)(N−1),
where the (p− 1)th block is given by (9), for p = 2, . . . , N .

B. Measurement Model Jacobian

As derived in [14], the measurement model Jacobian is
given by H(x) = [· · ·Hij(x)T · · · ]T, where,

Hij(x) =
[
0 · · ·Hij

p (x) · · ·Hij
q (x) · · · 0

]
∈ R1×m(N−1),

Hij
p (x) = ρijDT̄1pr̃τip⊙

p ∈ R1×m, (10)

Hij
q (x) = −ρijDT̄1q r̃τjq⊙

q ∈ R1×m, (11)

ρij =
DT1pr̃τipp − DT1q r̃τjqq

||DT1pr̃τipp − DT1q r̃τjqq || . (12)

The pth and qth block columns of Hij(x) are populated by
(10) and (11), respectively.

V. GSF INITIALIZATION PROCESS

A. Pose Evaluation using Geometry

The estimation of the four possible solutions for relative
poses between Robot 1 and Robot p in 2D, as shown in
Fig. 1b, is a challenging problem. They are first computed
using a geometric method. These solutions form a combina-
tion of all ambiguous relative poses between Robots 1 to N .
Since the robots only have two ranging tags each, to ensure
a finite number of solutions, the problem is addressed in 2D,
assuming zero relative height, roll, and pitch between the
robots. This is a reasonable assumption as the robots are at
ground level during start-up.

The notational preliminaries are as follows. The Tags 1
and 2 are in Robot 1 and Tags i and j are in Robot p. The
range measurements between Robots 1 and p are y1i, y1j ,
y2i, and y2j . The unit vector between tags τ1 and τ2 is,

n1 =
1

d
rτ2τ11 , d = ||rτ2τ11 ||, and n1⊥ =

[
0 −1
1 0

]
n1, (13)

is its dextral orthonormal counterpart. Additionally, note that,
any attitude Cpq ∈ SO(2) between the frames Fp and Fq



is a function of the heading ϕqp between the frames, and is
denoted as Cpq ≜ Cpq(ϕqp) [22].

In Fig. 2a, the two possible position vectors between Tags
τ1 and τµ, µ ∈ {i, j}, and subsequently, the possible position
vectors between Tags τi and τj are,

eµ =
1

2d
(y21µ − y22µ + d2), hµ =

√
(y21µ − e2µ), µ ∈ {i, j},

rτµτ1(1)1 = eµn1 + hµn1⊥, µ ∈ {i, j}, (14)

rτµτ1(2)1 = eµn1 − hµn1⊥, µ ∈ {i, j}, (15)

rτiτj(α)1 = rτiτ1(α)1 − rτjτ1(α)1 , α = 1, 2, (16)

where α is the mode number of the ambiguity.

τ1 τ2

τ (1)µ

n1

n1⊥

eµ

hµ

y1µ y2µ

τ (2)µ

fµ

d
F1

z1

(a) Geometry between tags
F1

Fp
r
τiτj(α)
r

φ
(α)
r1

φrp

φ
(α)
p1 = φ

(α)
r1 − φrp

F (α)
r

τ
(α)
i

τ
(α)
j

(b) Geometry between frames

Fig. 2. (a) Visualization of the geometric relation between tags τ1, τ2
of Robot 1 and τµ, µ ∈ {i, j} of Robot p resolved in F1. The range
measurements consist of y1µ and y2µ, µ ∈ {i, j}. The reference point in
Robot 1, 1, and the frame F1 are arbitrarily defined. (b) Visualization of
the relation between frames F1, Fp, and Fr . Tags τi and τj are mounted
on Robot p. In both figures, the superscript (·) represents the mode number.

A right-handed frame denoted as F (α)
r whose x-axis is

aligned with the physical vector r−→
τiτj(α) is shown in Fig. 2b

in blue. The heading of Fr relative to Fp and F1, and
subsequently the attitude, C(α)

1p , in modes 1 and 2 are,

ϕrp = tan−1(yp/xp), s.t. rτiτjp = [xp yp]
T,

ϕ
(α)
r1 = tan−1(y

(α)
1 /x

(α)
1 ), s.t. rτiτj(α)1 = [x

(α)
1 y

(α)
1 ]T,

C(α)
1p = C(α)

1r CT
pr, α = 1, 2. (17)

Thus, the relative robot positions in modes 1 and 2 are,

rp1(α)1 = C(α)
1p rpτip + rτiτ1(α)1 + rτ111 , α = 1, 2. (18)

The flip ambiguities in modes 3 and 4 are reflections of
the modes 1 and 2 about the axis joining the Tags τi and τj
relative to F1, given by [26, Eq. (8)],

rp1(α+2)
1 =

[
dα −2aαbα

−2aαbα −dα

]
rp1(α)1 − 2cα

[
aα
bα

]
a2α + b2α

,

where, dα = b2α − a2α, cα = diag(−aα, bα) rτi1(α)1 , and
rτjτi(α)1 = [bα aα]

T, α = 1, 2. As shown in Fig. 1b, the
respective attitudes in these modes have a heading of π
relative to the attitudes in modes 1 and 2, given by,

C(α+2)
1p = C(π)C(α)

1p , α = 1, 2. (19)

By repeating this process, there will be 4 modes of N −1
relative poses between Robots 1 and p, for p = 2, . . . , N .
Therefore, the total number of combinations of modes are
M = (4)N−1, collectively denoted as x(i)

geom, i = 1, . . . ,M .

B. Nonlinear Least-Squares Optimization

The geometric estimates x(i)geom, i = 1, . . . ,M are used to
initialize a nonlinear least-squares algorithm [27] by solving

x̂0 =
1

2
argmin

x
∥e(x)∥2 , where e(x) = g(x)− ȳ.

Here, instead of a single set of inter-tag range measurements,
an average of γ ≥ 100 range measurements, ȳ, are used,
which are collected when the robots are static. The averaging
enhances the signal-to-noise ratio and improves estimation
accuracy. For i = 1, . . . ,M , x ∈ SE(2)N−1 is iteratively
updated using the ⊕ operator as,

x̂(i)t = x̂(i)
t−1 ⊕

(
λ δx(i)

t−1

)
, (20)

where λ is the step size, t is the iteration number, and
x̂(i)0 = x(i)

geom. The optimal step δx(i)t−1 is given by

δx(i)
t−1 = −

(
H(x)TH(x)

)−1
H(x)Te(x)

∣∣∣
x̂(i)t−1

, (21)

where H(x) is the measurement model Jacobian. The itera-
tions are repeated until ||δx(i)t−1|| is small. In the measurement
Jacobian, by taking the measurements between all the tags
into account, the least-squares method produces a far more
accurate estimate of the ambiguous relative poses than the
geometric method. It even reduces the number of ambiguities
since it is fed more inter-robot measurement information
compared to the geometric method. However, the geometric
method confines the initial guesses to a small and informed
state space, essential for efficient convergence of the least-
squares estimator.

The covariance of the least-squares estimate represents
the uncertainties associated with estimating the state using
the range measurements. Assuming that the average range
measurements, ȳ, are unbiased, using this matrix as the
covariance of state estimates is a good starting point for any
filter initialization. This covariance is given by [28]

P(i)
τ = Σ(i)(H(x̂(i)

τ )TH(x̂(i)τ ))−1, Σ(i) =
1

L
e(x̂(i)τ )Te(x̂(i)τ ),

where L = |E|−(N−2), e(x̂(i)τ ) = ȳ−g(x̂(i)τ ), i = 1, . . . ,M ,
and τ is the last iteration number. Finally, the relative poses

−1 0 1
x (m)
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−1.0

−0.5

0.0
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y
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)

Robot 1

Robot 2

Robot 3

(a) Simulated UWB range data

−2 0 2
x (m)

−3

−2

−1

0

1

2

3

y
(m

)

(b) Experimental UWB range data

Fig. 3. Comparison between the true pose and the ambiguous GI-LS pose
estimates in a system of three robots, each having two tags. The opaque
drones denote the true poses. The lighter shaded drones with their respective
covariance plots are the pose estimates and their corresponding uncertainties.



between Robots 1 and p in the state x(i)τ are transformed from
SE(2) to SE(3) by augmenting them with zero quantities
such that the relative roll, pitch and height are zero, which
is a reasonable assumption for the start-up phase, where
the robots are at ground level. These estimates and their
covariances, denoted as {x̂(i)

τ , P̂(i)
τ }Mi=1, are referred to as the

geometrically-initialized least-squares (GI-LS) estimates.
This approach is validated in simulation and experiment,

as shown in Fig. 3, using the problem setup in Fig. 1a.
Here, the lighter shaded drones depict the estimates with
their covariances. Using 4 s of noisy range measurements at
50Hz in simulation and 5 s at 90Hz in experiment, both with
a covariance R = 0.121m2, the proposed method identifies
all four ambiguities in SE(2) for each robot. The estimates
are accurate despite noise and disturbances. Furthermore,
the estimates with lower covariances are more likely to
be the “true” mode, given that the covariance indicates
confidence. Note that, since the least squares method has
more measurement information, in Fig. 3, it is able to reduce
the number of ambiguities from 16 geometric estimates to 8
final estimates for the three-robot scenario.

VI. SIMULATIONS

The GSF with its proposed initialization features is com-
pared with the PF and EKF in simulation. The setup is shown
in Fig. 1a, where the three robots have two tags each, and
Robot 1 is the reference robot. The two tags are located at

rτipp = [0.17 0.17 0]T and rτjpp = [0.17 − 0.17 0]T,

where i and j are the tag IDs, p is the robot ID, and the units
are in meters. The robot velocities are inputs to the process
model, and inter-tag range data at 50Hz, with a covariance
of R = 0.121m2 are the measurements.

In Fig. 4, the pose-error plots for a single run of the GSF,
PF, and EKF in simulation are shown. The GSF is initialized

Fig. 4. The performance of the EKF, GSF and PF on simulated data for
two-tag Robots 2 and 3, with Robot 1 as reference robot. The GSF and
PF are initialized with 8 GI-LS estimates and 1500 particles, respectively.
The EKF is initialized in a wrong mode among the 8 GI-LS estimates. The
shaded regions represent the ±3σ bounds.

Fig. 5. GSF trajectory estimation plot for a single run in simulation, shown
in 2D. Only some modes of the GSF and only the relative position between
Robot 1 and Robot 2 are shown for clarity. The ground truth starts at the
location the quadcopters are plotted, and Robot 1 is the reference robot.

with 8 equally-weighted GI-LS estimates, {x̂(i)τ , P̂(i)
τ }8i=1, the

PF with 1500 particles around the ambiguities, and the EKF
is initialized in a wrong mode among the 8 GI-LS estimates.
From the error plots alone, for this single run, despite the
GSF having far fewer Gaussian components than the PF’s
particles, it is visibly more stable and accurate. The EKF
diverges since it is initialized in a wrong mode. An EKF
initialized in the correct mode is not shown, as it is not
practical to know the correct mode in real-world scenarios.
Additionally, Fig. 5 shows the GSF trajectory estimation plot
in 2D for the same run. For clarity of reading the plot,
only the relative position estimates between Robot 1 and
Robot 2 and only some modes of the EKFs running inside
the GSF are shown. The plot clearly shows that the GSF
almost instantaneously converges to the “true” EKF as its
highest-weighted mode, which is EKF 5.

The proposed GSF’s performance is assessed over 100
Monte-Carlo trials with varied initial conditions and noise

Fig. 6. Violin and box plots showing the distribution of the 100-trial
attitude and position RMSEs for simulation in SE(3). The envelope shows
the relative frequency of RMSE values. The white dot is the median, and
the lower and upper bound of the black bar represent the first and third
quartile of the data, respectively.



realizations on random trajectories. Its root-mean-squared
error (RMSE) is compared to 100 EKF and PF trials. The
GSF is initialized with 8 GI-LS estimates, and the PF
with 1500 particles, and the EKF is randomly initialized
in one of the 8 modes. In Fig. 6, the GSF has a median
attitude RMSE of 0.034 rad, which is 70.6% lower than the
PF’s 0.116 rad, and EKF’s 0.305 rad. Similarly, the median
position RMSE is 0.090m for GSF, 0.242m for PF and
0.949m for EKF. Due to the proposed initialization method,
the Gaussian components are highly informative while being
far fewer than the particles in PF. This allows the GSF
to converge to the true mode faster than the PF, making
it more accurate, and computationally more efficient. The
normalized estimation error squared (NEES) test [27, Ch.
5.4] in Fig. 7 confirms GSF’s consistency within a 99%
confidence interval.

Fig. 7. 100-trial NEES plot for the proposed GSF estimator in simulation.

VII. EXPERIMENTAL RESULTS

Fig. 8. Experimental setup showing the three robots. Two UWB modules
or tags and an Intel RealSense D435i camera are mounted on each robot.

The filters are tested on three Uvify IFO-S quadcopters
to validate their performances in experiment. The setup of
three robots is depicted in Fig. 1a, with each robot having
two tags, and Robot 1 is the reference robot. The two tags
in all the robots are located at

rτipp =

 0.16
−0.17
−0.05

 , rτjpp =

−0.17
0.16
−0.05

 ,

where i and j are the tag IDs, p is the robot ID, and the units
are in meters. Each robot has an onboard IMU and an Intel
RealSense D435i stereo camera set. These sensors provide
the translational velocity estimates through VIO using the
ROS package Vins-Fusion [29] at 30Hz, and the angular
velocity readings are taken from the gyroscope at 200Hz.
The velocity estimates from VIO only serve as interoceptive

measurements to validate the proposed estimation approach.
Any other interoceptive measurements can be used in place
of VIO as well. Pose data from the Vicon motion-capture
system serve as ground truth. The robots follow a random
3D trajectory in a 6× 6× 3m3 space as shown in Fig. 8.

The UWB range measurements are provided to all the
estimators at 90Hz, which are corrected for uncertainties and
biases using the works of [30]. The GSF is initialized with
8 Gaussian GI-LS estimates, the PF with 1500 particles, and
the EKF is initialized in a wrong mode among the 8 GI-LS
estimates. Fig. 9 displays the pose-error plots of the filters
in experiment. The GSF and PF perform similarly, but the
EKF diverges as expected. Initially, the GSF has large error
spikes, but it soon stabilizes once it isolates the “true” mode.
In Python 3.8, the GSF estimates the states at an average
rate of 40Hz, and the PF does the same at 3.5Hz, making
the GSF many folds faster and strongly eligible for online
implementation.

Fig. 9. The performance of the EKF, GSF and PF on experimental data
for two-tag Robots 2 and 3, with Robot 1 as reference robot. The GSF and
PF are initialized with 8 GI-LS estimates and 1500 particles, respectively.
The EKF is initialized in a wrong mode among the 8 GI-LS estimates. The
shaded regions represent the ±3σ bounds.

VIII. CONCLUSION

Multi-robot systems with non-stationary range sensors
suffer from ambiguous poses due to observability issues.
This paper provides a complete and efficient 3D relative
pose estimation solution for these systems where UWB rang-
ing tags are the only exteroceptive sensors. In simulations
and experiments, the proposed estimator in the form of a
Gaussian-sum filter is shown to be accurate and compu-
tationally efficient. The GSF is consistent within a 99%
confidence interval, and it performs comparatively faster than
the particle filter. The results establish that a well-modelled
GSF should be the default tool for range-based 3D relative
pose estimation in multi-robot systems. Looking ahead, for
larger systems, decentralizing with multiple reference robots
can optimize the number of Gaussian components in the GSF,
thus reducing computational strain while retaining accuracy.
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[6] S. Güler, J. Jiang, A. A. Alghamdi, R. I. Masoud, and
J. S. Shamma, “Real Time Onboard Ultrawideband Local-
ization Scheme for an Autonomous Two-robot System,” in
IEEE Conference on Control Technology and Applications
(CCTA), Copenhagen, Denmark, 2018.

[7] C. C. Cossette, M. Shalaby, D. Saussié, J. R. Forbes, and
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[25] J. Solà, J. Deray, and D. Atchuthan, “A micro Lie theory
for state estimation in robotics,” arXiv: 1812.01537
[cs.RO], 2021.

[26] R. S. Zengin and V. Sezer, “A Novel Point Inclusion Test for
Convex Polygons Based on Voronoi Tessellations,” Applied
Mathematics and Computation, vol. 399, p. 126 001, 2020.

[27] Y. Bar-Shalom, T. Kirubarajan, and X.-R. Li, Estimation
with Applications to Tracking and Navigation. John Wiley
& Sons, Inc., 2002.

[28] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning. Springer New York Inc., 2001.

[29] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and
Versatile Monocular Visual-Inertial State Estimator,” IEEE
Transactions on Robotics, vol. 34, no. 4, pp. 1004–1020,
2018.

[30] M. A. Shalaby, C. C. Cossette, J. R. Forbes, and J. Le Ny,
“Calibration and Uncertainty Characterization for Ultra-
Wideband Two-Way-Ranging Measurements,” in IEEE In-
ternational Conference on Robotics and Automation (ICRA),
London, UK, 2023.


	Introduction
	Notation and Preliminaries
	Problem Formulation
	Gaussian-Sum Filter
	Process Model Jacobian
	Measurement Model Jacobian

	GSF Initialization Process
	Pose Evaluation using Geometry
	Nonlinear Least-Squares Optimization

	Simulations
	Experimental Results
	Conclusion

