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Abstract
This document is in supplement to the paper titled “Multi-Robot Relative Pose Estimation and IMU Prein-
tegration Using Passive UWB Transceivers”, available at [1]. The purpose of this document is to show
how IMU biases can be incorporated into the framework presented in [1], while maintaining the differential
Sylvester equation form of the process model.

1 Introduction
The need to estimate IMU biases is particularly important for applications that involve long-term navigation.
As compared to the framework presented in [1], most robotic applications involve additional exteroceptive
sensors such as GPS, a magnetometer, or a camera that provide measurements relative to static environmen-
tal quantities, which allow individual robots to estimate their own IMU biases using standard methods [2, Ch.
10], [3, 4]. In a multi-robot scenario, these bias estimates can be used by each robot to correct its own IMU
measurement before adding the measurement to the RMI. This is a loosely-coupled solution that overcomes
the need for each robot to share its IMU biases with its neighbours.

In [1], only range measurements are available that provide constraints among two moving bodies, hence
estimating the biases is trickier as there is no static reference. Nonetheless, even though the proposed
framework will mostly be used alongside additional exteroceptive sensors such as a camera to allow for
real-world applications, it is indeed important to address the issue of IMU biases in the context of the
framework presented in [1] to allow long-term navigation without relying on additional sensors. To do
so, this document presents how gyroscope biases and relative accelerometer biases can be estimated while
maintaining the differential Sylvester equation form of the process model, under a few assumptions.

The remainder of this document uses the same notation as in [1], and is organized as follows. Section 2
presents the pose process model with IMU biases, and Section 3 presents the bias process model. In Section
4, preintegration of the IMU measurements. The simulation and experimental results are shown in Sections
5 and 6, respectively.

2 Pose Process Model with Bias
The IMU biases affect the process model presented in [1], but the ranging protocol and the form of the
measurement model remain unchanged. The relative attitude process model is

Ċ0i = −
(
ω0a
0 − β

gyr,0
0

)×
C0i + C0i

(
ωia
i − β

gyr,i
i

)×
(1)
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in the presence of bias, where β
gyr,i
i is the bias of the gyroscope of Robot i resolved in the Robot i’s body

frame. Similarly, the relative velocity process model is

0v̇i0/a0 = −
(
ω0a
0 − β

gyr,0
0

)×
vi0/a0 + C0i

(
αi

i − βacc,i
i

)
− (α0

0 − βacc,0
0 ) (2)

= −
(
ω0a
0 − β

gyr,0
0

)×
vi0/a0 + C0iα

i
i −α0

0−C0iβ
acc,i
i + βacc,0

0︸ ︷︷ ︸
βacc,0i
0

(3)

= −
(
ω0a
0 − β

gyr,0
0

)×
vi0/a0 + C0iα

i
i −α0

0 + βacc,0i
0 , (4)

where βacc,i
i is the bias of the accelerometer of Robot i resolved in the Robot i’s body frame, and βacc,0i

0 ≜
βacc,0
0 −C0iβ

acc,i
i is the relative accelerometer bias of Robot 0 relative to Robot i, resolved in Robot 0’s body

frame. Lastly, the relative position process model is

0ṙi00 = −
(
ω0a
0 − β

gyr,0
0

)×
ri00 + vi0/a0 . (5)

Note that the choice of estimating the relative accelerometer bias βacc,0i
0 and the absolute gyroscope bias

β
gyr,0
0 is made to ensure that the process model remains of the form of a differential Sylvester equation,

Ṫ0i =

 Ċ0i
0v̇i0/a0

0ṙi00
0

0



= −


 (ω0a

0

)×
α0

0

1
0

−


(
β

gyr,0
0

)×
βacc,0i
0

0
0


T0i

+ T0i


 (ωia

i

)×
αi

i

1
0

−


(
β

gyr,i
i

)×
0

0
0




≜ −(Ũ0 − B̃0)T0i + T0i(Ũi − B̃i). (6)

This is of a similar form as the process model presented in [1], and has a closed-form solution of the form

T0i,k+1 = exp((Ũ0,k − B̃0,k)∆t)−1︸ ︷︷ ︸
B−1
0,k

T0i,k exp((Ũi,k − B̃i,k)∆t)︸ ︷︷ ︸
Bi,k

(7)

for an initial condition T0i,k.
The next step is then to linearize the discrete-time process model, in a manner similar to [1, Sec-
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tion VI.C]. Defining ΩB
0,k ≜

(
ω0a
0,k − β

gyr,0
0,k

)
∆t yields

B0,k =

 Exp(ΩB
0,k) ∆tJl

(
ΩB

0,k

)(
α0

0,k − βacc,0i
0,k

)
∆t2

2 N
(
ΩB

0,k

)(
α0

0,k − βacc,0i
0,k

)
1 ∆t

1



= MExp


 ∆t1

∆t1
∆t2

2 Jl
(
ΩB

0,k

)−1
N
(
ΩB

0,k

)


︸ ︷︷ ︸
VB
0,k

([
ω0a
0,k

α0
0,k

]
︸ ︷︷ ︸

u0,k

−
[

β
gyr,0
0,k

βacc,0i
0,k

]
︸ ︷︷ ︸

β0,k

)

≜ MExp
(
VB
0,k(u0,k − β0,k)

)
.

Perturbing this with respect to the input u0,k and the bias β0,k yields

B0,k = B̄0,k Exp
(
LB
0,k(δu0,k − δβ0,k)

)
,

where LB
0,k ≜ J l(−V̄B

0,k(ū0,k − β̄0,k))V̄B
0,k, and J l(·) is the left Jacobian of SE2(3). Similarly, defining

ΩB
i,k ≜

(
ωia
i,k − β

gyr,i
i,k

)
∆t,

Bi,k =

 Exp(ΩB
i,k) ∆tJl

(
ΩB

i,k

)
αi

i,k
∆t2

2 N
(
ΩB

i,k

)
αi

i,k

1 ∆t
1



= MExp


 ∆t1

∆t1
∆t2

2 Jl
(
ΩB

i,k

)−1
N
(
ΩB

i,k

)


︸ ︷︷ ︸
VB
i,k

([
ωia
i,k

αi
i,k

]
︸ ︷︷ ︸

ui,k

−
[

1
0

]
︸ ︷︷ ︸

E

β
gyr,i
i,k

)

≜ MExp
(

VB
i,k(ui,k − Eβgyr,i

i,k )
)
.

Perturbing this with respect to the input ui,k and the bias βgyr,i
i,k yields

Bi,k = B̄i,k Exp
(

LB
i,k(δui,k − Eδβgyr,i

i,k )
)
, (8)

where LB
i,k ≜ J l(−V̄B

i,k(ūi,k − β̄
gyr,i
i,k ))V̄B

i,k.

3 Bias Process Model
Having derived and linearized the pose process model, the focus now shifts to the bias process model. The
bias states being estimated are the gyroscope biases β

gyr,0
0 and β

gyr,i
i , and the relative accelerometer bias

βacc,0i
0 . The evolution of IMU biases is oftentimes modelled as a random walk [4, 5]. Therefore, the process

model for the gyroscope biases is given by

β
gyr,0
0,k+1 = β

gyr,0
0,k +∆twgyr,0

0,k , (9)

β
gyr,i
i,k+1 = β

gyr,i
i,k +∆twgyr,i

i,k . (10)
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The relative accelerometer bias is more involved. The evolution of the individual accelerometer biases
of the robots are also modelled as random walks,

βacc,0
0,k+1 = βacc,0

0,k +∆twacc,0
0,k , (11)

βacc,i
i,k+1 = βacc,i

i,k +∆twacc,i
i,k . (12)

The evolution of the relative accelerometer bias is a function of the individual accelerometer biases of the
robots and the relative pose between the robots, and is given by

βacc,0i
0,k+1 = βacc,0

0,k+1 −ΠT0i,k+1Π
Tβacc,i

i,k+1, (13)

where Π ≜
[

13 03×2

]
∈ R3×5. Using (7), (11), and (12), the relation in (13) can be written as

βacc,0i
0,k+1 = βacc,0

0,k −ΠB−1
0,kT0i,kBi,kΠ

Tβacc,i
i,k +∆twacc,0

0,k −ΠB−1
0,kT0i,kBi,kΠ

T∆twacc,i
i,k (14)

≈ βacc,0i
0,k +∆twacc,0

0,k −ΠB−1
0,kT0i,kBi,kΠ

T∆twacc,i
i,k , (15)

where the lattermost approximation is dependent on an assumption that ∆t is sufficiently small. As ∆t → 0,
it can be shown that B0,k → 1 and Bi,k → 1, meaning that the first two components in (14) are approximately
of the same form as the right-hand side in (13) and can be combined into the relative acceleromer bias term
βacc,0i
0,k . Perturbing (9), (10), and (15) is then straightforward.

4 Preintegration
The preintegration of the IMU measurements is also affected by the presence of IMU biases, but is quite
similar to the preintegration shown in [1, Section VII]. In the proposed preintegration framework, each robot
constructs its RMI by correcting the gyroscope measurements using its own gyroscope bias estimate and
inflating the uncertainty associated with the RMI based on the uncertainty of the bias estimate. Nonetheless,
each robot leaves the accelerometer measurements uncorrected when constructing the RMI.

To derive this, first note that

T0i,m =

(
m−1∏
k=ℓ

B0,k

)−1

T0i,ℓ

m−1∏
k=ℓ

Bi,k, (16)

meaning that the RMI constructed by Robot i is of the form

∆TB
i,ℓ:m =

m−1∏
k=ℓ

Bi,k ∈ DE2(3).

Therefore, (16) can be written as

T0i,m =

(
m−1∏
k=ℓ

B0,k

)−1

T0i,ℓ∆TB
i,ℓ:m, (17)

which differs from the RMI in [1, Section VII] in that the gyroscope measurements are corrected using the
Robot i’s estimate of its own gyroscope bias. Consequently, the RMI can be updated iteratively as

∆TB
i,ℓ:k+1 = ∆TB

i,ℓ:kBi,k. (18)

As in [1], a perturbation of the form

∆TB
i,ℓ:m = ∆T̄B

i,ℓ:m Exp(δwB
i,ℓ:m)
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is defined for the RMI, and using (8), the perturbation of the RMI is given by

δwB
i,ℓ:k+1 = Ad(B̄−1

i,k )δwB
i,ℓ:k + LB

i,kδui,k − LB
i,kEδβgyr,i

i,k , (19)

where the last term reflects the increased uncertainty of the RMI associated with the uncertainty in the
gyroscope bias estimate.

Lastly, the asynchronous-input filter shown in [1, Section VII.C] can now be formulated for bias-
modelling applications. At time-steps where there is no communication with the neighbour, the pose and
bias process models are given by

T 0i,k+1 = B−1
0,kT0i,k, T 0i,k+1 ∈ DE2(3), (20)

β
gyr,0
0,k+1 = β

gyr,0
0,k +∆twgyr,0

0,k , (21)

βacc,0i
0,k+1 = βacc,0i

0,k +∆twacc,0
0,k −ΠB−1

0,kT0i,kΠ
T∆twacc,i

i,k . (22)

Meanwhile, at time-steps when Robot i sends the RMI ∆TB
i,ℓ:m, the pose and bias process models are given

by

T0i,m = B−1
0,m−1T 0i,m−1∆TB

i,ℓ:m, (23)

β
gyr,0
0,m = β

gyr,0
0,m−1 +∆twgyr,0

0,m−1, (24)

βacc,0i
0,m = βacc,0i

0,m−1 +∆twacc,0
0,m−1 −ΠB−1

0,m−1T 0i,m−1∆TB
i,ℓ:mΠT∆twacc,i

i,m−1 (25)

These equations can then be perturbed in a manner similar to [1].

5 Simulation Results

Table 1: Bias simulation parameters. Other simulation parameters remain unchanged from [1, Table I].

Specification Value
Accelerometer bias random walk std. dev. [m/s2] 1.58× 10−3

Gyroscope bias random walk std. dev. [rad/s] 2.5× 10−5

In order to validate the proposed framework in the presence of IMU biases, the same simulation runs as
in [1] are repeated, but with the addition of IMU biases. The bias simulation parameters are given in Table
1. Given that neighbours use their own gyroscope bias estimates to correct their gyroscope measurement
before constructing the RMI, additional noise is added to the gyroscope bias true state of neighbours to
simulate uncertain gyroscope bias estimates. This is then used to correct the gyroscope measurements and
to inflate the RMI.

The results for Simulation S1 are shown in Figure 1, where it can be seen that the gyroscope and relative
accelerometer biases estimated by the reference robot do converge to the true values. Additionally, Simula-
tion S3 is run to assess the consistency of the proposed estimator in the presence of IMU biases. The NEES
plot for this simulation is shown in Figure 2, where it can be seen that the NEES values display a similar
behaviour to [1, Figure 12], starting with weak observability and then converging towards consistency.

6 Experimental Results
The experimental results are also rerun with IMU bias estimation to validate the approach proposed in this
document. These results differ from the results presented in [1] in that the IMU biases are no longer initial-
ized using the motion capture system, except for the gyroscope biases of neighbouring robots to simulate
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Figure 1: Error plots and ±3σ bounds (shaded region) for Robot 0’s estimate of Robot 1’s relative pose, its
own gyroscope bias, and Robot 1’s relative accelerometer bias for Simulation S1.
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Figure 2: 50-trial NEES plot for the proposed estimator on Simulation S3 in the presence of bias.

neighbours running their own estimator. The proposed framework presented in [1] is then compared to the
one presented here with IMU bias estimation, and it is shown that estimating biases in the absence of bias
initialization does indeed improve performance, as shown in Figure 3 for Trial 1 and in Table 2 for all trials.
Note that the bias error plots are not shown as the true IMU bias is unknown. The performance with bias
estimation is also comparable to the performance of the estimator in [1] with bias initialization, but is in fact
typically worse probably due to the transient of the bias estimates before convergence, thus resulting in more
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Figure 3: Error plots and ±3σ bounds (shaded region) for Robot 0’s estimate of Robot 1’s relative pose for
experimental trial 1, without offline bias correction.

Table 2: The RMSE of Robot 0’s estimate of neighbouring robots’ relative pose for multiple experimental
trials, without offline bias correction.

Robot 1 Robot 2
Without Bias
Estimation
RMSE [m]

With Bias
Estimation
RMSE [m]

Without Bias
Estimation
RMSE [m]

With Bias
Estimation
RMSE [m]

Trial 1 0.785 0.404 0.723 0.410
Trial 2 1.232 0.828 0.902 0.615
Trial 3 0.916 0.548 0.649 0.413
Trial 4 1.282 0.753 0.853 0.638

uncertain pose estimates during the earlier stages. It is expected that for longer trajectories the performance
of the estimator with bias estimation will be better than the estimator in [1] with bias initialization, as the
initial bias estimates becomes less accurate with the progress of time.

7 Conclusion
In this document, the proposed estimator in [1] is extended to include IMU bias estimation. It is shown
that, when modelling the evolution of biases as a random walk, the IMU biases can be incorporated into the
process model while still maintaining the Sylvester equation form. To do so, each robot estimates its own
gyroscope bias in its own body frame, and uses this estimate to correct the IMU measurements and inflating
the covariance when constructing the RMI. Additionally, each robot estimates a relative accelerometer bias
to every neighbour in the robot’s own body frame, which does not affect the computed RMI. The proposed
estimator is then validated in simulation and in experiments, and is shown to improve performance in the
absence of bias initialization.
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