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Abstract— In multi-robot missions, relative position and
attitude information between robots is valuable for a variety
of tasks such as mapping, planning, and formation control. In
this paper, the problem of estimating relative poses from a set
of inter-robot range measurements is investigated. Specifically,
it is shown that the estimation accuracy is highly dependent
on the true relative poses themselves, which prompts the desire
to find multi-robot formations that provide the best estimation
performance. By direct maximization of Fischer information, it
is shown in simulation and experiment that large improvements
in estimation accuracy can be obtained by optimizing the
formation geometry of a team of robots.

I. INTRODUCTION

The ability for a robot, or agent, to determine the
relative position and attitude, collectively called pose, of
another robot is an important prerequisite in multi-robot team
applications. Tasks such as collaborative mapping, planning,
and formation control usually require relative position or
pose information between the robots. This functionality has
been achieved using various sensors, such as cameras with
object detection [1], or with infrared emitters/receivers [2].

Ultra-wideband (UWB) is a type of radio signal that
can be timestamped with sub-nanosecond-level accuracy
at both transmission and reception [3]. As such, UWB
is commonly used to obtain about 10-cm-accurate range
(distance) measurements between a pair of UWB transceivers
called tags. The transceivers’ small size, weight, and
cost make them an attractive sensor for many robotics
applications, including relative position estimation in multi-
robot scenarios. By placing one or more tags on each robotic
agent, a completely self-contained relative positioning
solution is possible [4, 5], which does not depend on
any external infrastructure such as static UWB tags, called
anchors, or a motion capture system.

In this theme of infrastructure-free relative position
estimation, a wide variety of approaches exist in the
literature. For example, inertial measurement units (IMUs),
visual odometry or optical flow have been used along with
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a single UWB tag on each agent [6–10]. However, these
single-tag-per-agent approaches typically have a persistency
of excitation (POE) requirement. That is, agents must be
under persistent relative motion for relative states to be
observable [11, 12]. This can be energy intensive and
impractical, as a static or slowly-moving team of agents
will have drifting position estimates. One way to eliminate
the POE requirement is to use visual detection of other
agents, as in [13], which also uses visual odometry and UWB
ranging. Although their solution is accurate, visual object
detection can be computationally expensive, and the agents
must periodically enter each other’s camera field-of-view.

Another class of approaches that do not require computer
vision or POE is to have multiple tags on some or
all of the agents [14, 15]. We have recently proposed
installing two UWB tags on each agent [16], where we
show that relative positions are observable from the range
measurements alone. When combined with an inertial
measurement unit (IMU) and a magnetometer, the agents’
individual attitudes can be estimated relative to a world
frame, allowing relative positions to be resolved in the
world frame. However, magnetometer sensor measurements
are substantially disturbed in the presence of metallic
structures indoors [17, 18], which degrades estimation
accuracy. Another challenge is that there are certain
formation geometries that cause the relative positions to be
unobservable, such as when all the UWB tags lie on the
same line [16]. This is closely tied to the well-known general
dependence of positioning accuracy on the geometry of the
tags, and arises even with the presence of anchors [19].

To avoid divergence of the state estimator, multi-robot
missions relying on inter-robot range measurements for
relative position estimation must avoid these aforementioned
unobservable formation geometries. This imposes a
constraint on planning algorithms. A planning solution to
avoid unobservable positions is proposed in [20], where a
cost function based on the Cramér-Rao bound quantifies
the estimation accuracy as a function of robot positions. A
similar approach is presented in [21] for multi-tag robots.
Limitations of these approaches include the requirement
of the presence of anchors, as well as the lack of explicit
consideration of agent attitudes.

This contribution of the paper is a method for computing
optimal formations for relative pose estimation, especially
in the absence of anchors. Furthermore, it is shown that
with two-tag agents, both the relative position and relative
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heading of the agents are locally observable from range
measurements alone. The problem setup is deliberately
formulated in the agents’ body frames, thus being completely
invariant to any arbitrary world frame, eliminating the need
for a magnetometer. This paper further differs from [21] by
using SE(n) pose transformation matrices to represent the
relative poses, avoiding the complications associated with
angle parameterizations of attitude. This leads to the use
of an on-manifold gradient descent procedure to determine
optimal formations. Simulations and experiments show that
the variance of estimation error does indeed decrease as the
agents approach their optimal formations.

The proposed cost function is general to 2D or
3D translations, arbitrary measurement graphs, and any
number of arbitrarily-located tags. Moreover, the proposed
cost function goes to infinity when the agents approach
unobservable configurations, meaning that its use naturally
avoids such unobservable formation geometries. For these
reasons, the cost function is amenable to a variety of
future planning applications, such as to impose an inequality
constraint on an indoor exploration planning problem.

The paper is outlined as follows. The problem setup,
notation, and other preliminaries are described in Section II.
The optimization setup and results are described in Section
III. The optimal formations are evaluated experimentally in
Section IV.

II. PROBLEM SETUP, NOTATION, AND PRELIMINARIES

Consider N agents along with M ranging tags distributed
amongst them. Let τ1, τ2, . . . , τM consist of unique physical
points collocated with the ranging tags. Let a1, . . . , aN
represent reference points on the agents themselves.
The inter-tag range measurements are represented by a
measurement graph G = (V, E) where V = {1, . . . ,M}
is the set of nodes, which is equivalent to the set of tag
IDs, and E is the set of edges corresponding to the range
measurements. Defining the set of agent IDs as A =
{1, . . . , N}, it is convenient to define a simple “lookup
function” ` : V → A that returns the agent ID on which
any particular tag is located. For example, if τi is physically
on agent α, then `(i) = α. An example scenario with three
agents using this notation is shown in Figure 1. A bolded
1 and 0 indicates an appropriately-sized identity and zero
matrix, respectively.

A. State Definition and Range Measurement Model

Since the agents are rigid bodies, an orthonormal reference
frame attached to their bodies can be defined. A position
vector representing the position of point z, relative to point
w, resolved in the body frame of agent α is denoted rzwα ∈
Rn. The attitude of the body frame on agent α relative to
the body frame on agent β is represented with a rotation
matrix Cαβ ∈ SO(n) such that rzwα = Cαβrzwβ . The relative
position and attitude between agents α and β, (raβaαα ,Cαβ)
define the relative pose between them, and can be packaged

together in a pose transformation matrix

Tαβ =

[
Cαβ raβaαα

0 1

]
∈ SE(n). (1)

The exponential and logarithmic maps of the special
Euclidean group SE(n) are denoted exp : se(n) → SE(n)
and ln : SE(n) → se(n), respectively, where se(n) is the
Lie algebra of SE(n). The common “wedge” operator (·)∧ :
Rm → se(n) and “vee” operator (·)∨ : se(n)→ Rm are also
used [22], where m is the degrees of freedom associated
with SE(n). For a more thorough background on matrix
Lie groups, including expressions for the aforementionned
operators, see [22, 23].

Throughout this paper, Agent 1 will be the arbitrary
reference agent, such that the poses of all the other agents
are expressed relative to Agent 1

x = (T12, . . . ,T1N ). (2)

A generic range measurement between tag i and tag j is
modelled as a function of the state x = (T12, . . . ,T1N ) with

yij(x) = ||C1αrτiaαα + raαa11 − (C1βrτjaββ + raβa11 )||+ vij ,

(3)

where α = `(i), β = `(j), and vij ∼ N (0, σ2
ij). This can be

written compactly with the pose transformation matrices,

yij(x) =

∥∥∥∥DT1α

[
rτiaαα

1

]
− DT1β

[
rτjaββ

1

]∥∥∥∥+ vij

, ‖DT1αpi − DT1βpj‖+ vij , (4)

where D = [1 0]. The state x = (T12, . . . ,T1N ), written here
as a tuple of poses, is an element of a Lie group of its own,

x ∈ SE(n)× . . .× SE(n) , SE(n)N−1.

The group operation for SE(n)N−1 is the elementwise
matrix multiplication of the pose matrices in two arbitrary
tuples, and the group inverse is the elementwise matrix

1y

a2

a3

a1

τ2

τ1

τ6

τ3

τ4

Fig. 1. Problem setup and notation used. Each agent possesses a reference
point aα where α is the agent ID, as well as two tags τi, τj , where i, j
are the tag IDs. 1x and 1y are vectors which represent the x and y axis of
Agent 1’s body frame. Throughout this paper, the red agent is the arbitrary
reference agent, and it will always be Agent 1 without loss of generality.
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inversion of the elements of the tuple x. The ⊕ operator
is defined here as

x⊕ δx =
(
T12 exp(δξ∧2 ), . . . ,T1N exp(δξ∧N )

)
, (5)

where δξi ∈ Rm, δx = [δξT2 . . . δξTN ]T ∈ Rm(N−1), and
will be used throughout the paper.

III. OPTIMIZATION

The goal is to find the relative agent poses that, with
respect to some metric, provide the best relative pose
estimation results if the estimation were to be done
exclusively using the range measurements. The metric
chosen in this paper is based on Fischer information and
the Cramér-Rao bound, which will be recalled here.

Definition 1 (Fischer information matrix [24]): Let y ∈
Rq be a continuous random variable that is conditioned on a
nonrandom variable x ∈ Rn. The Fischer information matrix
(FIM) is defined as

I(x) = E

[(
∂ ln p(y|x)

∂x

)T(
∂ ln p(y|x)

∂x

)]
∈ Rn×n, (6)

where E[·] is the expectation operator and p(·) denotes a
probability density function.

Theorem 1 (Cramér-Rao Bound [24]): Let y ∈ Rq be a
continuous random variable that is conditioned on x ∈ Rn.
Let x̂(y) be an unbiased estimator of x, i.e., E[e(x)] =
E[x̂(y)− x] = 0. The Cramér-Rao lower bound states that

E
[
e(x)e(x)T

]
≥ I−1(x). (7)

Theorem 2 (FIM for a Gaussian PDF): Consider the
nonlinear measurement model with additive Gaussian noise,

y = g(x) + v, v ∼ N (0,R). (8)

The Fischer information matrix is given by

I(x) = H(x)TR−1H(x), (9)

where H(x) = ∂g(x)/∂x.
The Cramér-Rao bound represents the minimum variance

achievable by any unbiased estimator. Hence, motivated by
Theorem 1, an estimation cost function Jest is defined

Jest(x) = − ln det I(x), (10)

which will be minimized with the agent relative poses x as
the optimization variables. The logarithm of the determinant
of I(x) is one option amongst many choices of matrix norms,
such as the trace or Frobenius norm. We have found the
chosen cost function to behave well in terms of numerical
optimization and, most importantly, goes to infinity when the
FIM becomes non-invertible. The state x is locally observable
from measurements y if the measurement Jacobian H(x) is
full column rank, which also makes the FIM full rank. As
will be seen in Section III-B, non-invertibility of the FIM
also corresponds to formations that result in unobservable
relative poses, which should be avoided.

To create a measurement model in the form of (8), the
range measurements are all concatenated into a single vector

y(x) = [. . . yij(x) . . .]T︸ ︷︷ ︸
,g(x)

+v, ∀(i, j) ∈ E , v ∼ N (0,R),

where R = diag(. . . , σ2
ij , . . .). It would be possible to

directly descend the cost in (10) with an optimization
algorithm such as gradient descent, if not for the fact that
the state x does not belong to Euclidean space Rn but
rather SE(n)N−1. As such, the expression ∂g(x)/∂x is
meaningless unless properly defined.

A. On-manifold Cost and Gradient Descent

The modification employed in this paper is to
reparameterize the measurement model by defining
x = x̄⊕ δx, leading to

y = g(x̄⊕ δx) + v , ḡ(δx). (11)

The state x̄ will represent the current optimization iterate,
which will be updated using δx.

Since the argument of the new measurement model ḡ(δx)
now belongs to Euclidean space Rm(N−1), it is possible to
compute the “local” approximation to the FIM [25] at x = x̄
with I(x̄) = H(x̄)TR−1H(x̄) where

H(x̄) =
∂g(x̄⊕ δx)

∂δx

∣∣∣∣
δx=0

,

and evaluate the cost function Jest(x̄) = − ln det I(x̄).
Finally, an on-manifold gradient descent step with step size
γ can be taken with

x̄← x̄⊕
(
−γ ∂Jest(x̄⊕ δx)

∂δx

∣∣∣∣
δx=0

)T

. (12)

The proposed gradient descent procedure is a standard
approach to optimization on matrix manifolds [26]. From
a differential-geometric point of view, an approximation to
the FIM is computed in the tangent space of the current
optimization iterate x̄, which is a familiar Euclidean vector
space. A gradient descent step is computed in the tangent
space, and the result is retracted back to the manifold
SE(n)N−1 using the retraction Rx̄(δx) = x̄⊕ δx.

B. Cost function implementation

Creating an implementable expression for the cost function
Jest(x̄) = − ln det

(
H(x̄)TR−1H(x̄)

)
eventually amounts to

computing the Jacobian of the range measurement model (4)
with respect to δξα and δξβ . To see this,

H(x̄) =


...

Hij(x̄)
...

 ,
Hij(x̄) = [0 . . .Hij

α (x̄) . . .Hij
β (x̄) . . . 0],
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Fig. 2. All four plots show the value of the cost with varying agent position
(right agent for two-agent scenario, top agent for three-agent scenario),
while maintaining fixed heading. The top row shows only the estmation cost
Jest, while the bottom row shows the total cost J including the collision
avoidance term.

where

Hij
α (x̄) ,

∂yij(x̄⊕ δx)

∂δξα

∣∣∣∣
δx=0

,

Hij
β (x̄) ,

∂yij(x̄⊕ δx)

∂δξβ

∣∣∣∣
δx=0

.

The row matrix Hij(x̄) ∈ R1×m(N−1) represents the
Jacobian of a single range measurement yij with respect
to the full state perturbation δx. This resulting matrix will
be zero everywhere except for two blocks Hij

α (x̄) ∈ R1×m

and Hij
β (x̄) ∈ R1×m, respectively located at the αth and βth

block columns, and have closed-form expressions derived in
Appendix A.

The cost function Jest is visualized for varying agent
position in the top row of Figure 2, where the red dot shows
the minimum found within that view. Looking at the top-
left plot of Figure 2, there is a vertical line of high cost
near the agent on the left, corresponding exactly to when
all four tags line up, leading to an unobservable formation.
Similarly, the three-agent scenario in the top-right plot of
Figure 2 shows a high cost when the agents are nearly all on
the same line, which is a situation of near-unobservability.
However, as can be seen in the top-left plot, the minimum is
unacceptably close to the left agent, which would cause them
to collide. Indeed, we have observed that naively descending
the cost Jest alone leads to all the agents collapsing into
each other. An explanation for this behavior is that when
agents are closer together, changes in attitude result in larger
changes in the range measurements, which increases Fischer
information. Nevertheless, in practice, collisions must be
avoided, and this is done by augmenting the cost with an

additional collision avoidance term Jcol(x), such that the
total cost J(x) is

J(x) = Jest(x) + Jcol(x), Jcol(x) =
∑
α,β∈A
α6=β

Jαβcol (x),

where a collision avoidance cost from [27] is used,

Jαβcol (x) =

(
min

{
0,

∥∥raαaβ1

∥∥2 −R2∥∥raαaβ1

∥∥2 − d2

})2

. (13)

The term R represents an “activation radius” and d is the
safety collision avoidance radius. In this paper, the agent
relative position is expressed as a function of pose matrices
with

raαaβ1 = DT1αb− DT1βb,

where D = [1 0], b = [0 1]T. The new cost function J is
plotted on the bottom row of Figure 2, showing the effect
of the collision avoidance term. Finally, one is now ready to
descend the cost directly with

x̄← x̄⊕
(
−γ ∂J(x̄⊕ δx)

∂δx

∣∣∣∣
δx=0

)T

. (14)

In this work, the Jacobian of Jest is computed numerically
with finite difference [28], and the optimization is only
done offline for the following reasons. The solution to the
optimization problem is only a function of some physical
properties, the measurement graph G, and the number of
robots N . For any experiments that use the same hardware,
the physical properties such as the safety radius, tag
locations, and measurement covariances, all remain constant.
The measurement graph G can often also be assumed
to be constant and fully connected. Even though full-
connectedness is not required in the proposed approach,
technologies such as UWB often have a ranging limit
that is well beyond the true ranges between all robots in
the experiment. Hence, it is straightforward to precompute
optimal formations for varying robot numbers N with fully-
connected measurement graphs, and to store the solutions
in memory onboard each robot. The computation time for
this method, for 10 agents or less, is on the order of a few
minutes.

Nevertheless, a distributed, real-time implementation is
required for varying measurement graphs, which is likely
to arise in the presence of obstacles that block line-of-sight.
Such a scenario requires simultaneously satisfying obstacle
avoidance constraints and perhaps other planning objectives,
which is beyond the scope of this paper.

C. Optimization results

The gradient descent in (14) is performed with a step size
of γ = 0.1, an activation radius of R = 2 m, and a safety
radius of d = 1 m. Each agent has two tags located at

rτiaαα = [0.2 0.2]T, and rτjaαα = [0.2 − 0.2]T,

where α = `(i) = `(j) and the units are in meters. Figure 3
shows quadcopter formations at convergence for 3, 4, 5, and
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10 agents, each with a fully-connected measurement graph
G, except for edges corresponding to two tags on the same
agent. The results shown here are intuitive, with the three-
and four-agent scenarios corresponding to an equilateral
triangle and square, respectively. However, with increasing
agent numbers, regular polygon formations are no longer
optimal, as can be seen in the five- and ten-agent scenarios.

Since the treatment in this paper is general to an
arbitary measurement graph G, provided the FIM remains
maximum rank, optimization is also performed for a non-
fully-connected measurement graph. The results for this
along with a 3D scenario are shown in Figure 4. In 3D, the
robot relative poses are represented with elements of SE(3),
but with four degrees of freedom corresponding to the three
translational components and heading. This is because two-
tag robots are used in these simulations, making relative roll
and pitch between robots unobservable without more sensors.
Hence, roll and pitch are excluded from the optimization and
their values are fixed to zero. Moreover, from an application
standpoint, both ground vehicles and quadcopter-type aerial
vehicles only have heading as a rotational degree of freedom
available for planning.

The cost function J has many local minima associated
with the various geometric symmetries contained in the
problem. That is, for two-tag agents, a “flip” of 180
degrees in heading for each agent leads to a local
minimum, as do symmetries in the formation positions.
The solutions presented are the result of a trial-and-error
process with hand-picked initial guesses, where all local
minimums encountered in this process provided sufficiently
low covariance. Therefore, it can be argued that finding the
global minimum is not necessary, especially if only avoiding
the unobservable formations of high cost is required.

D. Validation on a least squares estimator

To validate the claim that descending the cost improves the
estimation performance, a non-linear least-squares estimator
is used. At regular iterates x̄ of the optimization trajectory, a
small 2000-trial Monte Carlo experiment is performed, where
in each trial a set of range measurements are generated with
y = g(x̄) + v, v = N (0,R). Then, an on-manifold Gauss-
Newton procedure [23] is used to solve

x̂ = arg min
x

1

2

N∑
α=2

∥∥ln(CT
1αČ1α)∨

∥∥2

P̌α
+

1

2
‖y− g(x)‖2R ,

(15)
where ‖e‖2M = eTM−1e denotes a squared Mahalanobis
distance, and an attitude prior with “mean” Č1α and
covariance P̌α is also included for each agent. It turns
out that minimization of only the second term in (15)
yields unacceptably poor estimation performance, as the
solution often converges to local minimums depending on
the initial guess. The inclusion of a low-covariance attitude
prior, which is practically obtained by dead-reckoning on-
board gyroscope measurements, is critical for obtaining low
estimation error.

Fig. 3. Final locally optimal formations for 3, 4, 5, and 10 agents, with
the optimization paths shown in blue.

Fig. 4. (left) Optimal formation with sparse measurement graph. (right)
Optimal formation with 3D position and heading as design variables.

Figure 6 shows the value of the cost throughout the
optimization trajectory, as well as the mean squared
estimation error over the K = 2000 Monte Carlo trials per
optimization step. The true agent poses are initialized in a
near-straight line, as shown in Figure 5, and the covariances
used are R = 0.121 m2, P̌α = 0.082 rad2. The mean squared
estimation error (MSE) is calculated with

MSE =
1

K

K∑
k=1

δξTδξ, δξ =

 ln(T̄−1
12 T̂12)∨

...
ln(T̄−1

1N T̂1N )∨

 ,
(16)

and shows a clear correlation with the cost function. This
provides evidence for the fact that descending the proposed
cost function also reduces the estimation error.

IV. EXPERIMENTAL EVALUATION

An estimator is also run with three PX4-based Uvify
IFO-S quadcopters in order to experimentally validate the
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Fig. 5. Trajectory taken during optimization with superimposed 1σ equal-
probability contours corresponding to the Cramér-Rao bound. The ellipsoids
for the starting positions are too large to fit in the figure.

Fig. 6. Cost function, along with various metrics of a least-squares
estimator, obtained from 2000 Monte-Carlo trials at various points during
the optimization. In the bottom two plots, the red squares denote the average
norm of the respective estimation errors.

claim that descending the proposed cost function results in
improved estimation performance. The quadcopters start by
flying in a line formation and, after 30 seconds, proceed to a
triangle formation computed using the proposed framework
for another 30 seconds, as shown in Figure 8. Figure 7 shows
the position estimation error using the least-squares estimator
presented in Section III-D. Real gyroscope measurements
are used to obtain an attitude prior at all times. Range
measurements are synthesized with a standard deviation of
10 cm using ground truth vehicle poses obtained from a
motion capture system. The UWB tags are simulated to be
17 cm apart, corresponding to extremities of the propeller
arms. As can be seen in Figure 7, moving to the optimal
triangle formation, from one of the worst starting formations
results in a 68% reduction in estimation variance.

V. CONCLUSION

This paper shows, in both simulation and experiment,
that range-based relative state estimation performance can
be substantially improved by a proper choice of formation
geometry. The largest improvements are obtained when the
robots move away from unobservable formations.

Fig. 7. Experimental results using a least squares estimator. From 0 s to 30
s, the quadcopters are in a line formation and the average positioning error
is 0.77 m. From 30 s to 60 s, the quadcopters are in an optimal formation
and the average positioning error is 0.22 m, a 68% reduction.

Fig. 8. (top) Three quadcopters in an initial straight line formation. (bottom)
Quadcopters in an optimal triangle formation.

The generalizability of the cost function makes it
appropriate for use beyond direct minimization. For instance,
consider using this function to impose an inequality
constraint on an application-oriented planning problem, such
as indoor exploration. Using an inequality constraint would
allow robots the freedom to move within the feasible region
in order to accomplish tasks such as infrastructure inspection,
yet still avoid the “worst” formations with very high cost,
which could cause problematically large state estimation
errors. Future work may tackle a scenario similar to this,
including developing a distributed computation scheme for
the proposed cost function.

APPENDIX

A. Measurement model Jacobian

Let yij(x) = yij(x̄) + δyij , ȳij + δyij , T1α =
T̄1α exp(δξ∧α), T1β = T̄1β exp(δξ∧β ), and vij = 0. The terms
δyij , δξα, δξβ are assumed to be small quantities, which
motivates, for example, the approximation exp(δξ∧α) ≈ 1 +
δξ∧α. Equation (4) becomes
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(ȳij+δyij)
2 =

(
DT̄1α(1 + δξ∧α)pi − DT̄1β(1 + δξ∧β )pj

)T(
DT̄1α(1 + δξ∧α)pi − DT̄1β(1 + δξ∧β )pj

)
,

which, after expanding and neglecting higher-order terms,
leads to

2ȳijδyij = 2(pT
i T̄T

1αDT − pT
j T̄T

1βDT)DT̄1αδξ
∧
αpi

+ 2(pT
j T̄T

1βDT − pT
i T̄T

1αDT)DT̄1βδξ
∧
βpi. (17)

Next, it is straightforward to define a simple operator (·)�,
as per [23], such that ξ∧p = p�ξ. Rearranging (17) yields

δyij =
(pT
i T̄T

1αDT − pT
j T̄T

1βDT)

ȳij
DT̄1αp�i δξα

−
(pT
i T̄T

1αDT − pT
j T̄T

1βDT)

ȳij︸ ︷︷ ︸
,ρT

ij

DT̄1βp�j δξβ . (18)

The term ρij is the physical unit direction vector between
tags i and j, resolved in Agent 1’s body frame. From (18)
it then follows that

∂yij
∂δξα

= ρT
ijDT̄1αp�i ,

∂yij
∂δξβ

= −ρT
ijDT̄1βp�j .
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