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Abstract—Ultra-wideband (UWB) systems are becoming in-
creasingly popular as a means of inter-robot ranging and com-
munication. A major constraint associated with UWB is that only
one pair of UWB transceivers can range at a time to avoid interfer-
ence, hence hindering the scalability of UWB-based localization.
In this article, a ranging protocol is proposed that allows all robots
to passively listen on neighboring communicating robots without
any hierarchical restrictions on the role of the robots. This is
utilized to allow each robot to obtain more range measurements
and to broadcast preintegrated inertial measurement unit (IMU)
measurements for relative extended pose state estimation directly
on SE2(3). Consequently, a simultaneous clock-synchronization
and relative-pose estimator is formulated using an on-manifold
extended Kalman filter (EKF) and is evaluated in simulation using
Monte Carlo runs for up to seven robots. The ranging protocol is
implemented in C on custom-made UWB boards fitted to three
quadcopters, and the proposed filter is evaluated over multiple
experimental trials, yielding up to 48% improvement in localization
accuracy.

Index Terms—Inertial measurement unit (IMU) preintegration,
localization, multi-robot systems, range sensing.

I. INTRODUCTION

MULTI-ROBOT teams’ prevalence is a direct consequence
of two factors, recent advancements in available tech-

nology and demand for automating complex tasks. The former
has recently been accelerated through the adoption of ultra-
wideband (UWB) radio frequency signals as a means of ranging
and communication between robots, where ranging means ob-
taining distance measurements. UWB is a relatively inexpensive,
low-power, lightweight, and compact technology, which allows
for high-rate ranging and data transfer. An example of UWB
boards fitted to a quadcopter is shown in Fig. 1. Robotic teams
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Fig. 1. Experimental setup. (a) Custom-made board fitted with a DWM1000
UWB transceiver. (b) Uvify IFO-S quadcopter equipped with two UWB
transceivers 45 cm apart.

Fig. 2. Trajectories followed by three simulated quadcopters.

equipped with UWB and other sensors, such as cameras and/or
inertial measurement units (IMUs), have been considered for
relative pose estimation, which is a prerequisite for applications
such as collision avoidance and collaborative mapping and in-
frastructure inspection.

Nonetheless, using UWB for relative pose estimation in multi-
robot teams introduces a distinct set of problems. First, UWB
ranging and communication is not robust to interference, thus
imposing the constraint that only one pair of transceivers can
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communicate at a time. This is typically addressed using time-
division multiple-access (TDMA) media-access control (MAC)
protocols alongside a round robin approach to determine which
pair communicates at each time. However, the larger the team of
robots, the longer the time gaps in between a robot ranging with
another. Another complication with UWB ranging is the reliance
on time-of-flight (ToF) measurements, which necessitates the
presence of a clock at each UWB transceiver. However, in prac-
tice these clocks run at different rates, and therefore require some
synchronization mechanism. The importance of synchronization
can be highlighted by the fact that 1 ns in synchronization
error translates to c [m/s] × 10−9 [s] ≈ 30 [cm] in localization
error, where c is the speed of light.

Another practical issue associated with multirobot systems
is communication constraints, which limit the amount of in-
formation that can be transmitted between robots. In filtering
applications where there are, for example, three quadcopters
moving randomly in a 3-D space, as shown in Fig. 2, IMU
measurements must be broadcasted if robots are to estimate their
neighbors’ relative states directly from the raw measurements.
Nonetheless, IMU measurements are typically recorded at a
very high frequency, and the constraint that only one pair can
be communicating at a time means that communication links
between robots do not always exist. Therefore, a more efficient
way of sharing odometry information is required.

To achieve a practical relative pose estimation solution that
is implementable on a robotic team, this article addresses the
aforementioned constraints. The contributions of this work are
summarized as follows.

1) A ranging protocol is introduced that extends classical
ranging protocols by allowing neighboring robots to pas-
sively listen to the measurements and timestamp recep-
tions, with no assumptions or imposed constraints on
the robots’ hierarchy. The concept of passive listening is
utilized to provide a (1 + 3n)-fold increase in the num-
ber of measurements recorded when there are a total of
n+ 1 robots each equipped with two UWB transceivers.
The concept of passive listening is additionally utilized
for more efficient information sharing and implementing
simple MAC protocols.

2) Representing the extended pose state as an element
of SE2(3), an on-manifold tightly coupled simultane-
ous clock-synchronization and relative-pose estimator
(CSRPE) is then proposed, which allows incorporating
passive listening measurements in an extended Kalman
filter (EKF) to improve the relative pose estimation. This
provides a means for many different robots to estimate the
relative poses of their neighbors relative to themselves at
a high frequency.

3) Rather than sharing high-frequency IMU readings with
neighbors, the concept of preintegration [1] is developed
for relative pose states on SE2(3), and is used as a
means of efficient IMU data logging and communica-
tion between robots. This is additionally incorporated
in the CSRPE, where the theory behind filtering with
delayed inputs is developed as the preintegrated IMU
measurements arrive asynchronously from neighboring
robots.

4) The proposed algorithm is evaluated in simulation using
Monte Carlo trials and in experiments using four trials with
three quadcopters equipped with two UWB transceivers
each. It is shown that localization accuracy improves up
to 23% when compared with a centralized scenario and
up to 48% when compared with the case of no passive
listening.

The remainder of this article is organized as follows. Re-
lated work is presented in Section II, and Lie group and UWB
preliminaries are discussed in Section III. The problem is for-
mulated in Section IV, then the proposed ranging protocol is
discussed in Section V. The relative pose process model and
preintegration on SE2(3) are discussed in Sections VI and VII,
respectively. Simulation and experimental results are discussed
in Sections VIII and IX, respectively, before further practical
considerations are mentioned in Section X. Finally, Section XI
concludes this article.

II. RELATED WORK

The majority of UWB-based localization relies on a set of
prelocalized and synchronized static transceivers, or anchors, to
localize a mobile transceiver [2], [3], [4]. This typically relies on
the anchors ranging with the mobile transceiver using standard
ranging protocols, such as two-way ranging (TWR) or time-
difference-of-arrival [5], [6], [7, Ch. 7.1.4]. More complicated
ranging protocols have been proposed in [8], [9], and [10] to
allow multiple anchors to passively listen in on messages with
the mobile transceiver to localize it.

Calibrating the clocks and location of anchors is challenging,
and the Authors in [11] and [12] propose an approach where an-
chors actively range with one another to synchronize and localize
themselves. Meanwhile, a mobile transceiver passively listens
to these signals to localize itself using the anchors’ estimated
clock states and positions. The work in [13] and [14] extends
this by applying a Kalman filter to the synchronization and
localization problem. Meanwhile, in [15], the synchronization
approach is accurate to within a few microseconds, whereas
nanosecond-level accuracy is desired for localization with cm
accuracy.

Overcoming the need for a fixed infrastructure of anchors,
UWB has been used more recently for teams of robots [16],
[17], [18]. In [19], it is assumed that neighboring robots know
their poses and clock states, thus essentially behaving as mobile
anchors, allowing a mobile transceiver to localize itself. The use
of robots with multiple transceivers is proposed in [20] and [21],
and in [22], a robot equipped with four transceivers localizes a
mobile transceiver relative to itself by having one of the four
transceivers actively range with the target and the other three
passively listening.

In [23] and [24], a passive listening-based ranging protocol is
proposed where the network is divided into “parent robots” that
actively range with one another and “child robots” that passively
listen in on these measurements. This hierarchical constraint has
the limitation that parent robots cannot localize child robots and
do not benefit from passive listening measurements themselves
when they are not involved in a ranging transaction. In addition,
it is suggested that the child robots use the estimated position and

Authorized licensed use limited to: McGill Libraries. Downloaded on September 14,2024 at 02:08:39 UTC from IEEE Xplore.  Restrictions apply. 



2412 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Fig. 3. Distribution of the posterior position of the green robot given a position
prior and a single range measurement with the red robot.

clock states of the parent states, which in filtering applications
would lead to untracked cross-correlations that would result in
poor performance [25].

Furthermore, in filtering applications, the problem of commu-
nicating IMU measurements to neighbors remains unaddressed.
In [26] and [27], scattering theory is used to send precomputed
matrices between two robots rather than individual IMU mea-
surements, in a manner similar to the concept of preintegra-
tion [1], [28]. However, extending this to more than two robots
is challenging, particularly for preintegrated poses directly on
SE2(3) [29], [30].

The motive behind using SE2(3) state representation for
relative pose estimation using range measurements is due to this
being inherently a nonlinear problem, which is commonly ad-
dressed using particle filtering [31], [32] to handle nonellipsoid-
shaped distributions in Cartesian coordinates, see Fig. 3. This
nonlinearity motivates the use of an on-manifold EKF, such as
an EKF with states represented directly on theSE2(3)manifold,
which can represent such nonellipsoid-shaped distributions us-
ing exponential coordinates [33].

III. PRELIMINARIES

A. Notation

Throughout this article, a bold upper-case letter (e.g., X)
denotes a matrix, a bold lower-case letter (e.g., x) denotes a
column matrix, and a right arrow under the letter (e.g., x−→)
denotes a physical vector. In a 3-D space, a vector x−→ resolved in

a reference frame i is denoted as xi ∈ R
3, while the derivative

of a vector x−→ with respect to frame i is denoted as iẋ−→.
The vector from point w to point z is denoted as r−→zw. The

relative velocity and acceleration between points z and w with
respect to frame i are denoted

v−→
zw/i � i ṙ−→

zw, a−→
zw/i � i v̇−→

zw/i.

The rotation from a reference frame j to a reference frame i
is parametrized using a rotation matrix Cij ∈ SO(3). There-
fore, the relationship between rzwi and rzwj is given by
rzwi ≡ Cijr

zw
j .

Fig. 4. Summary of the operators between elements of the different spaces
associated with SE2(3).

Throughout this article, 1 and 0 denote identity and zero ma-
trices of appropriate dimension, respectively. When ambiguous,
a subscript will indicate the dimension of these matrices.

B. Matrix Lie Groups

The pose of one rigid body relative to another is defined using
the relative attitude and position (C, r), where all subscripts
and superscripts are dropped in this section for conciseness.
Meanwhile, the extended pose of one rigid body relative to
another is defined using the relative attitude, velocity, and posi-
tion (C,v, r). The extended pose can be represented using an
extended pose transformation matrix [29]

T =

⎡
⎣C v r

1
1

⎤
⎦ ∈ SE2(3),

where empty spaces represent 0 entries. The corresponding
matrix Lie algebra is denoted as se2(3) ⊂ R

5×5, and elements of
this Lie algebraG ∈ se2(3) can also be represented as elements
of R9 by defining a linear mapping (·)∧ : R9 → se2(3) such
that

G = ξ∧, ξ ∈ R
9.

Similarly, the inverse of (·)∧, denoted as (·)∨ : se2(3) → R
9,

is defined such that ξ = G∨.
Mapping elements of the matrix Lie algebra se2(3) to the ma-

trix Lie group SE2(3) is the exponential map exp : se2(3) →
SE2(3), thus yielding the definition

T = exp(ξ∧) � Exp(ξ),

where Exp : R9 → SE2(3) is defined for conciseness. The
inverse of the exponential map is the logarithmic map log :
SE2(3) → se2(3), yielding the definition

ξ = log(T)∨ � Log(T),

where Log : SE2(3) → R
9 is defined for conciseness.

Because of the fact that SE2(3) is a matrix Lie group, the
exponential map and logarithmic map are the same as the matrix
exponential and the matrix logarithm, respectively. The opera-
tors between elements of the different spaces are summarized
in Fig. 4, and their expression is found in [29], [30], and [34,
Ch. 9]. Two other useful operators on SE2(3) are the Adjoint
matrix Ad : SE2(3) → R

9×9 defined by

Exp(Ad(T)ξ) � TExp(ξ)T−1,
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Fig. 5. Example of a ranging transaction, where Transceivers f1 and s2 are
actively ranging with one another and all other tags are passively listening.

and the odot operator (·)	 : R5 → R
5×9 defined such that

p	ξ � ξ∧p (1)

for any vector p ∈ R
5.

The noncommutativity of matrix multiplication means that
matrix Lie group elements can be perturbed from the left T =
Exp(δξ)T̄ or the right T = T̄Exp(δξ), where the overbar de-
notes a nominal value. In addition, the first-order approximation

Exp(δξ) ≈ 1+ δξ∧ (2)

will often be used when linearizing nonlinear models.

C. UWB Ranging and Clocks

UWB ranging between two transceivers relies on ToF mea-
surements, which are deduced from timestamps recorded by a
clock on each transceiver. However, these clocks are unsynchro-
nized. Denoting ti(t) as the time t resolved in Transceiver i’s
clock gives

ti(t) = t+ τi(t), (3)

where τi(t) defines the (time-varying) offset of clock i.
To obtain a range measurement, the two transceivers transmit

and timestamp a sequence of messages among themselves,
as shown between Robot 1 and Robot 2 in Fig. 6. A time
instance corresponding to the ith message is denoted as Ti

for the transmission time and Ri for the reception time, while
a subscript j denotes the time instance as timestamped by
Transceiver j. For example, T1f0 is the timestamp corresponding
to the first message transmission as recorded by Transceiver f0.
The protocol example shown between Robot 1 and Robot 2 in
Fig. 6 is a modified version of the standard double-sided two-way
ranging (DS-TWR [35]) protocol as presented in [6], where the
message shown in red represents an “information message” used
to broadcast the timestamps recorded by Robot 1.

Fig. 6. Proposed ranging protocol when Transceiverf1 is initiating a DS-TWR
ranging transaction with Transceiver s2. This article proposes that all other
transceivers listen in on these messages. Transceivers f0 and s0 on Robot 0 are
passively listening, where the time instance corresponding to the ith passive
reception at Transceiver j is denoted as Pi,j .

IV. PROBLEM FORMULATION

Consider a scenario with n+ 1 robots, as shown in Fig. 5, for
n = 3. Throughout this article, the perspective of one robot is
considered, denoted without loss of generality Robot 0, as any
of the n+ 1 robots can be considered as Robot 0. Neighboring
robots are then referred to as Robot i, where i ∈ {1, . . . , n}. This
article employs a “robocentric” viewpoint of the relative pose
state estimation problem, where all states are estimated relative
to Robot 0 and are resolved in the body frame of that robot.
The robots are assumed to be rigid bodies, so any vector can be
resolved in one of the following n+ 2 reference frames:

1) an (absolute) inertial frame denoted with a subscript a,
2) Robot 0’s body frame denoted with a subscript 0, or
3) neighboring Robot i’s body frame denoted with a sub-

script i.
Each robot is equipped with an IMU at its center, consisting

of a three-axis gyroscope and accelerometer. Given the use of
accelerometers, the relative pose estimation problem involves
estimating the extended pose of each neighboring robot relative
to Robot 0 in Robot 0’s body frame. The extended pose of Robot
i is then defined as

T0i =

⎡
⎣C0i v

i0/a
0 ri00
1

1

⎤
⎦ ∈ SE2(3), i ∈ {1, . . . , n},
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where time dependence is omitted from the notation for concise-
ness. The dependence on the absolute frame a is also omitted
from the notation T0i, with the convention that all extended
relative pose matrices in the article are of this form, where the
vector corresponding to the second component in the first row
is the derivative with respect to the absolute frame of the vector
corresponding to the third component, irrespective of the fact
that these vectors are resolved in frame 0.

Each robot is also equipped with two UWB transceivers for
relative pose observability [20]. The first and second transceivers
on Robot j are denoted fj and sj , respectively, for j ∈
{0, . . . , n}. It is assumed that the vector coordinates r

fjj
j and

r
sjj
j between the transceivers and the IMU on Robot j are known,

since they can be measured by hand or more accurately using a
motion capture system.

Denote the set of all transceivers as C =
{f0, . . . , fn, s0, . . . , sn}. Consider the state of the clock
on Transceiver i ∈ C relative to real time. The evolution of the
offset τi(t) of clock i is modeled using a third-order model
in [12]. However, [14] showed that a second-order model of the
form [

τ̇i
γ̇i

]
︸ ︷︷ ︸

ċi

=

[
0 1
0 0

]
︸ ︷︷ ︸

A

[
τi
γi

]
︸ ︷︷ ︸

ci

+wi (4)

is sufficient for localization purposes, where γi(t) is called the
clock skew, wi is a continuous-time zero-mean white Gaussian
process noise with E[wi(t1)wi(t2)

T] = Qδ(t1 − t2),

Q =

[ Qτ

Qγ

]
,

δ(·) is the Dirac’s delta function, and Qτ and Qγ are the
clock offset and skew process-noise power spectral densities,
respectively.

A robocentric viewpoint is also maintained for the clock
states, where offsets and skews of all clocks are estimated
relative to the clock of Transceiver f0 on Robot 0. The clock
state of Transceiver s0 is then

cs0f0 =

[
τs0f0
γs0f0

]
�
[
τs0 − τf0
γs0 − γf0

]
∈ R

2,

while the clock state of neighboring Robot i is given by

X c
i0 � (cfif0 , csif0) ∈ R

2 × R
2, i ∈ {1, . . . , n},

where, as before, time dependence is omitted from the notation
for conciseness. The full relative state estimate of Robot i is then
given by

X i0 � (T0i,X c
i0) ∈ SE2(3)× R

2 × R
2,

and the full state estimated by Robot 0 is

X � (cs0f0 ,X 10, . . . ,X n0) ∈ R
2 × (SE2(3)× R

2 × R
2
)n

.

Communication constraints limit Robot 0’s ability to estimate
the state X , since to prevent message collision only one pair
of transceivers can communicate at a time. As the number of
transceivers increases, this can result in poor scalability due to
longer wait times between successive ranging measurements by
a given pair. In addition, the rate at which transceivers communi-
cate is typically lower than the rate at which IMU measurements
are recorded at neighboring robots, thus Robot 0 cannot collect

the IMU measurements from all its neighbors without significant
and impractical communication overhead. Therefore, part of the
problem is to design a scalable and practical ranging protocol
that accommodates these communication constraints.

This article presents an on-manifold EKF for estimating the
state X using a novel ranging protocol that allows all robots to
listen in on neighbors while awaiting for their turn to communi-
cate. It is known from [20] and [36] that the relative pose states
are observable from IMU and range measurements. In particular,
the use of two transceivers per robot ensures the observability
of the relative poses while overcoming the need for persistent
excitation or constant relative motion between the robots [20].
This benefit comes at the added cost of an additional transceiver.
Nonetheless, UWB transceivers are typically compact,
lightweight, low power, and inexpensive. In fact, the ones used in
this article, as shown in Fig. 1, are 32 mm × 49 mm in size and
weigh approximately 8 g each. Meanwhile, assuming that the
relative pose states are known since they are observable from the
IMU and range measurements alone, clock offset measurements
are sufficient to ensure observability of the clock states [14].

To simplify the analysis in this article, a complete commu-
nication graph with no packet drops or failures between the
robots is assumed, which reduces the scalability of the system.
Another factor impacting the scalability of the system is that
the size of the state X increases with n; therefore, the number
of robots that can be included in Robot 0’s EKF is limited
by Robot 0’s computational capabilities. This article addresses
scenarios where n is limited to a few robots. The complications
associated with larger systems and incomplete and dynamic
communication graphs are discussed in Section X-B.

V. RANGING PROTOCOL

A. Overview

To address the communication constraints, a ranging pro-
tocol is proposed that involves performing DS-TWR between
all pairs of transceivers not on the same robot in sequence
while leveraging passive listening measurements at all other
transceivers that are not actively ranging. This is shown in
Fig. 6 for an example where Transceiver f1 is initiating a TWR
transaction with Transceiver s2, and Transceivers f0 and s0
are passively listening. In the proposed ranging protocol, any
of the 2(n+ 1) transceivers can initiate a TWR transaction
with any of the 2n transceivers not on the same robot. In
this section, the passive listening measurements are utilized
in the relative pose state estimator as a source of ranging in-
formation between the different robots. This is possible due
to the tightly-coupled nature of the proposed estimator, which
performs both clock synchronization and relative pose esti-
mation, meaning that clock-offset-corrupted passive listening
measurements can still be used to correct relative pose states, as
cross-correlation information is available between clock states
and relative pose states at all times. There are multiple advan-
tages to passive listening in multi-robot pose estimation applica-
tions, including the availability of more measurements for state
correction, providing the robots with information-broadcasting
ability, and allowing the implementation of simple MAC
protocols.
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The rest of this section analyzes how the proposed ranging
protocol can be used in a CSRPE. The particular scenario under
study is the one, as shown in Figs. 5 and 6, where transceivers on
two neighboring robots are the ones actively ranging. This is the
most general case, and scenarios where one of the transceivers
on Robot 0 is actively ranging involve similar but simpler
derivations.

B. The Protocol

The ranging protocol proposed in this article involves two
transceivers actively ranging with one another, while all other
transceivers passively listen in on the messages. The actively
ranging transceivers perform DS-TWR, as presented in [6].
The example shown in Fig. 6 is an example where Transceiver
f1 on Robot 1 initiates a transaction with Transceiver s2 on
Robot 2. Both robots have another transceiver, s1 and f2 for
Robot 1 and Robot 2, respectively, which then passively listen
to all the messages transmitted between the active transceivers.
In addition, all other robots have both their transceivers passively
listen to all the messages. For example, Robot 0 records passive
listening measurements at both Transceivers f0 and s0.

When the transceivers transmit and receive messages, whether
actively or passively, the transceivers timestamp the time of
transmission or reception. Each robot needs access to neigh-
boring robots’ timestamp measurements in order to be able to
compute range measurements from the transaction. For example,
Robot 0 needs access to the timestamps recorded by Transceivers
f1 and s2. As shown in Fig. 6, all timestamps are made available
at Robot 0 at the end of the transaction by communicating
all the timestamps recorded at Robot 1 in a final information
message shown in red, and the timestamps recorded at Robot 2
are communicated in the last message transmitted by Robot 2.
Note, however, that passive listening measurements recorded
by the other transceivers on Robot 1, Robot 2, and any other
neighboring robots are not made available to Robot 0. The
ranging protocol is outlined in Algorithm 1 for the scenario
shown in Fig. 6.

When implementing the ranging protocol, a choice has to
be made on the receiving robot’s side (in this case, Robot 2)
for the delays Δt21 � T2 − R1 and Δt31 � T3 − R1. These
user-defined parameters affect the frequency and noise of the
measurements, and can be chosen based on [37]. Note that
Δt32 � Δt31 −Δt21. In addition, it will be assumed throughout
this article that the distances between transceivers and the clock
skews remain constant during one ranging transaction. These are
good approximations for most robotic applications with typical
clock rate variations [7, Ch. 7.1.4], [37].

The proposed ranging protocol has the following advantages.
Given that all transceivers passively listen to neighboring robots
communicating, this proposed protocol gives robots the ability to
broadcast information, such as IMU measurements or estimated
maps, at a higher rate as any robot can obtain information
communicated between two neighboring robots. This feature
will be utilized for multirobot preintegration in Section VII. In
addition, given that each robot knows which robots are currently
ranging, a simple MAC protocol can be implemented to prevent
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message collision between multiple robots attempting to trans-
mit messages at the same time. To do so, a user-defined sequence
of ranging pairs can be made known to all robots. Each robot
can then keep track of which pair in the sequence is currently
ranging, and initiate a TWR transaction to a specified transceiver
when it is its turn to do so. This MAC protocol is named here
the common-list protocol.

C. Modeling Timestamp Measurements

The time instances shown in Fig. 6 are only available to the
robots as noisy timestamps and in the clocks of the transceivers
rather than in the global common time. Therefore, the timestamp
measurements are affected by clock offsets, clock skews, and
white noise. Modeling these effects, the timestamps available at
Robot 1 (hereinafter, the initiating robot) are of the form

T̃1f1 = T1 + τf1(T
1) + η1f1 , (5)

R̃2f1 = T1 +
2

c
ds2f1 +Δt21 + τf1(R

2) + η2f1 , (6)

R̃3f1 = T1 +
2

c
ds2f1 +Δt31 + τf1(R

3) + η3f1 , (7)

where (̃·) denotes a measured value, ds2f1 is the distance be-
tween Transceivers s2 and f1, and η�i is the random noise on the
�th measurement of Transceiver i. All the random noise variables
on timestamps are assumed to be independent, zero mean, and
with the same variance σ2. Similarly, the measurements avail-
able at Robot 2 (hereinafter, the target robot) are of the form

R̃1s2 = T1 +
1

c
ds2f1 + τs2(R

1) + η1s2 , (8)

T̃2s2 = T1 +
1

c
ds2f1 +Δt21 + τs2(T

2) + η2s2 , (9)

T̃3s2 = T1 +
1

c
ds2f1 +Δt31 + τs2(T

3) + η3s2 . (10)

The timestamp measurements (5)–(10) correspond to the stan-
dard DS-TWR protocol, from which ToF pseudomeasurements
can be generated. Nonetheless, additional measurements are
available at Robot 0 (hereinafter, the passive robot) since its
transceivers f0 and s0 also receive the messages exchanged be-
tween the two actively ranging robots. This yields the following
additional timestamp measurements at Robot 0

P̃
1,i
i = T1 +

1

c
df1i + τi(P

1,i) + η1i , (11)

P̃
2,i
i = T1 +

1

c
ds2f1 +

1

c
ds2i +Δt21 + τi(P

2,i) + η2i , (12)

P̃
3,i
i = T1 +

1

c
ds2f1 +

1

c
ds2i +Δt31 + τi(P

3,i) + η3i , (13)

where i ∈ {f0, s0}. Similarly, each neighboring robot not in-
volved in the ranging transaction records its own passive listen-
ing measurements at its two transceivers. However, these are not
shared with other robots as this would require each robot to take
its turn transmitting a message.

In the case where Robot 0 is not involved in the ranging
transaction and just listens in passively, there are 12 available
timestamp measurements at Robot 0, six sent by neighboring
robots, and three passive listening timestamps per transceiver

on Robot 0. However, when one of the transceivers f0 or s0
is involved in the ranging transaction, only nine timestamp
measurements are available.

D. Pseudomeasurements as a Function of the State

To use the timestamp measurements (5)–(13) in the CSRPE,
they must be rewritten as a function of the state being estimated.
In this section, pseudomeasurements based on the timestamps
available at Robot 0 after one TWR transaction are formulated to
get models that are only a function of the states being estimated,
as well as the known vectors between the transceivers and the
IMUs resolved in the robot’s body frame.

First, notice that the distance ds2f1 between transceivers in
(5)–(10) can be written as a function of the estimated states

ds2f1 =
∥∥∥rs2f10

∥∥∥
=
∥∥∥rs200 − rf100

∥∥∥
=
∥∥∥(C02r

s22
2 + r200 )− (C01r

f11
1 + r100 )

∥∥∥
=
∥∥∥Π(T02r̃

s22
2 −T01r̃

f11
1

)∥∥∥ , (14)

where ‖ · ‖ is the Euclidean norm, Π = [13 03×2 ] ∈ R
3×5,

and

r̃ =
[
rT 0 1

]T
.

To design the EKF, the linearization of (14) with respect to the
state is shown in Appendix B.

Therefore, pseudomeasurements can be formed that are only
a function of the distance between the transceivers, the clock
states (relative to f0), and the white timestamping noise. The
first pseudomeasurement is the standard ToF measurement
associated with DS-TWR [6], which from timestamps (5)–(10)
can be written as

ytof =
1

2

((
R̃2f1 − T̃1f1

)− R̃3f1 − R̃2f1
T̃3s2 − T̃2s2

(
T̃2s2 − R̃1s2

))

≈ 1

c
ds2f1 +

1

2

(
η2f1 − η1f1 − η2s2 + η1s2

)
. (15)

The relation (15) is obtained under the following approxima-
tions. First, clock skews γi are assumed constant over the dura-
tion of the transaction, where the transaction is in the order of a
few milliseconds, so that during the transaction

τi(t
′)− τi(t) ≈ γi(t

′ − t)

for any time instances t and t′ and Transceiver i. Second, Δt21,
which like Δt32 is in the order of a few hundreds of microsec-
onds, is much greater than d

c , and since clock skews are also
small (in the order of a few parts-per-million [5]), then to first
order γi(R2 − T1) ≈ γiΔt21. Third,

(1 + γf1)Δt32 + η3f1 − η2f1
(1 + γs2)Δt32 + η3s2 − η2s2

≈ (1 + γf1)

(1 + γs2)

because the timestamping noise, in the order of a few hundred
picoseconds at most, is much smaller than Δt32. Finally,

(1 + γf1)

(1 + γs2)

(
η2s2 − η1s2

) ≈ η2s2 − η1s2
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to first order, because the clock skews and timestamping noise
are both small.

The second pseudomeasurement is a direct clock offset mea-
surement between the initiating and target transceivers, which
from timestamps (5)–(10) can be written as

yτ =
1

2

((
R̃2f1 + T̃1f1

)− R̃3f1 − R̃2f1
T̃3s2 − T̃2s2

(
T̃2s2 − R̃1s2

)− 2R̃1s2

)

≈ τf1f0 − τs2f0 +
1

2

(
η2f1 + η1f1 − η2s2 − η1s2

)
, (16)

using the fact that τf1 − τs2 = τf1f0 − τs2f0 . Here and in the fol-
lowing, clock offsets are evaluated at time T1, which is omitted
from the notation. This model is somewhat similar to the mea-
surement model proposed in [14], but involves an additional term
to correct the effect of the clock skew on the measured offset. In
fact, the form of the first two pseudomeasurements is chosen to
cancel out the terms 1

2 (1 + γf1)Δt21 and − 1
2 (1 + γs2)Δt21 by

multiplying the latter with
1+γf1

1+γs2
.

The third pseudomeasurement is associated with the first
passive listening timestamp, which is a function of the distance
between the passive robot and the initiating robot, as well the
clock offset between the two transceivers. Using timestamps (5)
and (11) for i ∈ {f0, s0}, and τf0f0 � 0, this is written as

yp,1
i = P̃

1,i
i − T̃1f1 =

1

c
df1i + τif0 − τf1f0 + η1i − η1f1 . (17)

The fourth pseudomeasurement is similar to the third one, with
an additional skew-correction component to model the passage
of time Δt21 between the first and second signals in two clocks
with different clock rates. Using timestamps (9) and (12) for
i ∈ {f0, s0}, and γf0f0 � 0, this is modeled as

yp,2
i = P̃

2,i
i − T̃2s2

=
1

c
ds2i + τif0 − τs2f0

+ (γif0 − γs2f0)Δt21 + η2i − η2s2 (18)

using the fact that γi − γs2 = γif0 − γs2f0 . The exact delay
Δt21 appearing in (18) is in fact unknown, as delay values are
enforced by the transceivers in their own clocks. Nonetheless,
to first order, the corresponding term can be replaced by

(γif0 − γs2f0)Δt21 ≈ (γif0 − γs2f0)(T̃
2
s2

− R̃1s2).

Lastly, the fifth pseudomeasurement is similar to the fourth
pseudomeasurement, but over a longer time windowΔt31. Using
timestamps (10) and (13) for i ∈ {f0, s0}, this is modeled as

yp,3
i = P̃

3,i
i − T̃3s2

=
1

c
ds2i + τif0 − τs2f0

+ (γif0 − γs2f0)Δt31 + η3i − η3s2 . (19)

As before, Δt31 is unknown, but to first order

(γif0 − γs2f0)Δt31 ≈ (γif0 − γs2f0)(T̃
3
s2

− R̃1s2).

Note the last three pseudomeasurements are per listening
transceiver i, and therefore, there are a total of eight pseu-
domeasurements available at Robot 0 if it is not involved in
the ranging transaction, or five pseudomeasurements if one

of the transceivers on Robot 0 is active. The additional pseu-
domeasurements available at the listening transceivers results
in a (1 + 3n)-fold increase in the total number of distinct
measurements when considering a centralized approach where
passive listening measurements from all robots are available,
and a ( 12 + 2n)-fold increase in the number of distinct measure-
ments when considering the perspective of an individual robot
that does not have access to passive listening measurements
at other robots. For example, for five neighboring robots, this
results in a 16-fold and an 11.5-fold increase in the number
of measurements, respectively. The former is purely due to
passive listening measurements, while the latter is due to passive
listening measurements as well as the ability to obtain direct
ToF measurements between two neighboring robots. The proof
of this claim is given in Appendix A.

E. Pseudomeasurements’ Covariance Matrix

Given that the pseudomeasurements are a function of the
same measured timestamps, cross-correlations between the
pseudomeasurements exist and must be correctly modeled in
the filter. Computing the variance of the pseudomeasurements
(15)–(19) is straightforward, and can be summarized as

E
[
(ytof − ȳtof)2

]
= σ2, E

[
(yτ − ȳτ )2

]
= σ2,

E

[
(yp,j

i − ȳp,j
i )2
]
= 2σ2, j ∈ {1, 2, 3},

where an overbar denotes a noise-free value. Meanwhile, the
cross-correlation between the ToF and offset measurements
can be computed as E[(ytof − ȳtof)(yτ − ȳτ )] = 0 as the noise
values are of alternating signs. Lastly, the cross-correlations
between the passive listening measurements and the ToF mea-
surements can be shown as follows

E

[
(yp,1

i − ȳp,1
i )(ytof − ȳtof)

]
=

1

2
σ2,

E

[
(yp,2

i − ȳp,2
i )(ytof − ȳtof)

]
=

1

2
σ2,

E

[
(yp,3

i − ȳp,3
i )(ytof − ȳtof)

]
= 0,

while the cross-correlations with offset measurements are the
same but with an opposite sign for the correlation with yp,2

i .
Passive listening measurements of different transceivers are
also correlated. Stacking all the pseudomeasurements into one
column matrix gives the random measurement vector

y =
[
ytof yτ yp,1

f0
yp,2
f0

yp,3
f0

yp,1
s0 yp,2

s0 yp,3
s0

]T
with mean ȳ and covariance matrix R, where

R =

⎡
⎣ σ212

1
2σ

2D 1
2σ

2D
1
2σ

2DT 2σ213 σ213
1
2σ

2DT σ213 2σ213

⎤
⎦

and

D =

[
1 1 0
1 −1 0

]
.

The measurement vector y and its covariance R are used in the
correction step of an on-manifold EKF, where they are fused
with the process model derived in the next section.
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VI. PROCESS MODEL

To derive the process model, a Lie group referred to here as
DE2(3) (D stands for Delta) with matrices of the form

U =

⎡
⎣C v r

1 Δt
1

⎤
⎦ ∈ DE2(3) (20)

is introduced, where C ∈ SO(3), v, r ∈ R
3, and Δt ∈ R. The

inverse of U in (20) is

U−1 =

⎡
⎣CT −CTv −CT(r−Δtv)

1 −Δt
1

⎤
⎦ ∈ DE2(3).

Meanwhile, the adjoint operator satisfying

Exp(Ad(U)ξ) � UExp(ξ)U−1, Exp(ξ) ∈ SE2(3)

is given by

Ad(U) =

⎡
⎣ C 0 0

v×C C 0
−(Δtv − r)×C −ΔtC C

⎤
⎦ ,

where, for v = [v1 v2 v3]
T ∈ R

3,

v× =

⎡
⎣ 0 −v3 v2

v3 0 −v1
−v2 v1 0

⎤
⎦ .

In addition, following the terminology in [34, Ch. 9], a time
machine is a matrix M of the form

M =

⎡
⎣ 1

1 Δt
1

⎤
⎦ ∈ R

5×5,

where Δt ∈ R. This allows writing U in (20) as the product of
two matrices

U =

⎡
⎣ 1

1 Δt
1

⎤
⎦

︸ ︷︷ ︸
M

⎡
⎣ C v r

1
1

⎤
⎦

︸ ︷︷ ︸
T∈SE2(3)

.

It can be shown that M is in itself an element of a Lie group
closed under matrix multiplication.

This section first extends the results in [34, Ch. 9] to address
relative extended pose states. The clock-state process model is
then derived. These are then used alongside the ranging protocol
presented in Section V in the CSRPE.

A. Deriving the Extended Pose Process Model

The on-manifold relative pose kinematic model is first derived
in continuous time as a function of the IMU measurements. The
process model for the relative attitude between Robot 0 and
Robot i is

Ċ0i = C0i

(
ωi0

i

)×
, (21)

whereωi0
i is the angular velocity of Robot i’s body frame relative

to Robot 0’s body frame, resolved in Robot i’s body frame.
However, the gyroscopes on Robots 0 and i measure ω0a

0 and
ωia

i , respectively. Therefore, (21) is rewritten as

Ċ0i = C0i

(
ωia

i −CT
0iω

0a
0

)×
= −C0i

(
CT

0iω
0a
0

)×
+C0i

(
ωia

i

)×

= − (ω0a
0

)×
C0i +C0i

(
ωia

i

)×
. (22)

Meanwhile, using the transport theorem [38, Ch. 2.10], the
process model for the relative velocity of Robot i relative to
Robot 0 is

0 v̇−→
i0/a = −ω−→

0a × v−→
i0/a + a−→

iw/a − a−→
0w/a, (23)

where w is any point fixed to the reference frame a. Denoting
the specific forces measured by the accelerometers as

α−→
0 � a−→

0w/a − g−→, α−→
i � a−→

iw/a − g−→,

where g−→ is the gravity vector, (23) can be written as

0 v̇−→
i0/a = −ω−→

0a × v−→
i0/a + α−→

i − α−→
0. (24)

Similarly, the transport theorem gives the following process
model for the position of Robot i relative to Robot 0

0 ṙ−→
i0 = −ω−→

0a × r−→
i0 + v−→

i0/a. (25)

Lastly, resolving (24) and (25) in the body frame of Robot 0
and writing these equations as a function of the accelerometer-
measured quantities α0

0 and αi
i yields

0v̇
i0/a
0 = − (ω0a

0

)×
v
i0/a
0 +C0iα

i
i −α0

0, (26)

0ṙi00 = − (ω0a
0

)×
ri00 + v

i0/a
0 . (27)

Combining (22), (26), and (27), the extended relative pose
process model for Robot i can be written compactly as

Ṫ0i =

⎡
⎣Ċ0i

0v̇
i0/a
0

0ṙi00
0

0

⎤
⎦

= −
⎡
⎣
(
ω0a

0

)×
α0

0

1
0

⎤
⎦T0i

+T0i

⎡
⎣
(
ωia

i

)×
αi

i

1
0

⎤
⎦

� − Ũ0T0i +T0iŨi, (28)

with the matrices Ũ0 and Ũi containing the IMU measurements
for Robot 0 and Robot i, respectively.

B. Discrete-Time Extended Pose Process Model

In order to discretize (28), the common assumption is made
that accelerations and angular velocities are constant between
IMU measurements, which is justified by the fact that IMU mea-
surements typically occur at a high frequency (∼100–1000 Hz).
Consequently, since (28) is a differential Sylvester equation,
and setting the initial condition to be T0i,k at time-step k, a
closed-form solution exists of the form [39]

T0i,k+1 = exp(Ũ0,kΔt)−1︸ ︷︷ ︸
U−1

0,k

T0i,k exp(Ũi,kΔt)︸ ︷︷ ︸
Ui,k

, (29)

where Δt is the time interval between the IMU measurements
at time-steps k and k + 1.
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Following a similar derivation as in [34, Ch. 9], expanding the
matrix exponential is shown in Appendix C to yield a closed-
form matrix of the form

U0,k =

[
Exp(Ω0,k) ΔtJl (Ω0,k)α

0
0,k

Δt2

2 N (Ω0,k)α
0
0,k

1 Δt
1

]
,

where Ω0,k � ω0a
0,kΔt, and Jl is the left Jacobian of SO(3).

Both Jl and N are defined in Appendix C. Note that U0,k is
an element of the aforementioned Lie group DE2(3). Similarly,
Ui,k ∈ DE2(3) is of the same form as U0,k with the inputs
being that of neighboring Robot i instead.

C. Linearizing the Extended Pose Process Model

To perform uncertainty propagation computations for the
extended pose states, the process model is now linearized.
Throughout this article, the state is perturbed on the left, as it
yields simpler Jacobians. Nonetheless, a similar derivation can
be done by perturbing the state on the right.

Perturbing (29) with respect to the state yields

Exp(δξ0i,k+1)T̄0i,k+1 = Ū−1
0,k Exp(δξ0i,k)T̄0i,kŪi,k

= Exp(Ad(Ū−1
0,k)δξ0i,k)Ū

−1
0,kT̄0i,kŪi,k.

Canceling out nominal terms and taking the Log(·) of both sides
result in the linearized model

δξ0i,k+1 = Ad(Ū−1
0,k)δξ0i,k. (30)

To perturb (29) with respect to the input noise, the aforemen-
tioned concept of time machines is used. The input matrix U0,k

can be written as

U0,k

= M

[
Exp(Ω0,k) ΔtJl (Ω0,k)α

0
0,k

Δt2

2 N (Ω0,k)α
0
0,k

1
1

]

= MExp

⎛
⎝
⎡
⎣ ω0a

0,kΔt

α0
0,kΔt

Δt2

2 Jl (Ω0,k)
−1 N (Ω0,k)α

0
0,k

⎤
⎦
⎞
⎠

= MExp

([
Δt1

Δt1
Δt2

2 Jl (Ω0,k)
−1 N (Ω0,k)

]
︸ ︷︷ ︸

V0,k

[
ω0a

0,k

α0
0,k

]
︸ ︷︷ ︸

u0,k

)

� MExp(V0,ku0,k) (31)

where u0,k ∈ R
6 is Robot 0’s IMU measurements or input at

time-step k. Taking the perturbation of (31) with respect to the
input yields

U0,k ≈ MExp(V̄0,k(ū0,k + δu0,k))

≈ MExp(V̄0,kū0,k) Exp(J l(−V̄0,kū0,k)V̄0,kδu0,k)

= Ū0,k Exp(J l(−V̄0,kū0,k)V̄0,kδu0,k)

� Ū0,k Exp(L0,kδu0,k), (32)

where input noise perturbations inV0,k are neglected as the term
Δt2

2 Jl(Ω0,k)
−1N(Ω0,k) is small when the measurements are

obtained using a high-rate IMU, L0,k � J l(−V̄0,kū0,k)V̄0,k,

andJ l(·) is the left Jacobian ofSE2(3) [30, eq. (94)]. Similarly,

Ui,k = MExp(Vi,kui,k) ≈ Ūi,k Exp(Li,kδui,k). (33)

Therefore, left-perturbing the state process model (29) with
respect to the input noise yields

Exp(δξ0i,k+1)T̄0i,k+1

= Exp(−L0,kδu0,k)Ū
−1
0,kT̄0i,kŪi,k Exp(Li,kδui,k)

= Exp(−L0,kδu0,k) Exp(Ad(T̄0i,k+1)Li,kδui,k)T̄0i,k+1,

which can then be simplified to give

δξ0i,k+1 = −L0,kδu0,k +Ad(T̄0i,k+1)Li,kδui,k. (34)

It is worth mentioning that cross-correlations develop between
relative pose states for all neighbors, because the noisy IMU
measurements of Robot 0 are used to propagate all the relative
pose states. These cross-correlations can be tracked using the
models (30) and (34).

D. Discrete-Time Clock-State Process Model

The state dynamics for every clock is modeled as in (4).
Nonetheless, the clock states relative to real time are unknown
and unobservable. Therefore, clocks are modeled relative to
clock f0, thus giving dynamics of the form

ċif0 = Acif0 +
[−1 1

] [wf0

wi

]
(35)

for i ∈ C\{f0}. Discretizing (35) yields [40, Ch. 4.7]

cif0,k+1 = Ad cif0,k +wif0,k, (36)

where

Ad = exp(AΔt) =

[
1 Δt

1

]
,

wif0,k ∼ N (0,Qd), and

Qd = 2

[
ΔtQτ + 1

3Δt3Qγ 1
2Δt2Qγ

1
2Δt2Qγ ΔtQγ

]
.

Since the same noise wf0 appears in (35) for all i ∈ C\{f0},
the process noise vectors wif0,k in (36) are jointly Gaussian but
correlated, and one can show that their cross-covariance is

E
[
wif0,k w

T
jf0,k

]
=

1

2
Qd,

for all i, j ∈ C\{f0}, i = j.

VII. RELATIVE POSE STATE PREINTEGRATION

A. Need for Preintegration

When considering Robot 0’s perspective, the estimated rela-
tive pose state is updated using (29) and the corresponding error
covariance matrix using (30) and (34). Therefore, Robot 0 needs
the IMU measurements of neighboring robots at every time-step
in order to update its estimated state of its neighbors. This is
limiting since robots cannot broadcast their IMU measurements
at the same rate as they are recorded due to the possibility of
message collision if multiple robots attempt to broadcast at the
same time. In addition, to allow DS-TWR transactions to occur at
the highest rate possible, the IMU information should ideally be
transmitted using the ranging messages presented in Section V.
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Fig. 7. Communicated RMIs with and without passive listening over a window
of four ranging transactions, where ΔTi,�:m is the RMI associated with the
IMU measurements of Robot i from time-step � to time-step m− 1. (a) RMI
communication without passive listening. (b) RMI communication with passive
listening, where passive listening messages are shown using the gray arrows.

In this section, the concept of preintegration is proposed to
compactly encode the IMU measurements of a neighboring
Robot i over a window between two consecutive ranging in-
stances using one relative motion increment (RMI), which is
then sent over when Robot i ranges with one of its neighbors.
However, as illustrated in Fig. 7(a), without passive listening the
RMIs of Robot i become available to Robot 0 only when Robot
0 and Robot i communicate. Given that RMIs are computed
iteratively as new IMU measurements arrive, each robot needs
to keep track of one RMI per neighbor. For example, looking at
Fig. 7(a) at time-step k + 3, Robot 1 would be communicating
the RMI of IMU measurements in the window k to k + 3 to
Robot 1, while also tracking a separate RMI for the window
starting at k + 1 to be sent to Robot 0 at time-step k + 4.

On the other hand, passive listening over UWB lets two ac-
tively ranging robots broadcast their RMIs to all other robots, as
shown in Fig. 7(b). This has the advantage that IMU information
of neighbors becomes available faster at all robots, and the robots
computing RMIs only need to track one RMI at all times since all
neighbors are up-to-date with the most recently communicated
RMI.

B. Relative Motion Increments

Consider the case where Robot i is an active robot only at
nonadjacent time-steps � and m. From (29), the relative pose
state at time-step m can be computed from the relative pose
state at time-step � as

T0i,m =

(
m−1∏
k=�

U0,k

)−1

T0i,�

m−1∏
k=�

Ui,k. (37)

The inputs of Robot 0 are available at Robot 0 as soon as
the measurements occur; therefore, the first term of (29) can
be computed directly at every time-step. On the other hand,
the inputs of Robot i from time-step � to m− 1 will only be
available when the robot actively shares them at time-step m.
Rather than sharing the individual IMU measurements, Robot i

can simply send

ΔTi,�:m =
m−1∏
k=�

Ui,k ∈ DE2(3),

which is an RMI of the inputs of Robot i in the window � to
m. The process model representing time propagation between
nonadjacent time-steps can then be rewritten as

T0i,m =

(
m−1∏
k=�

U0,k

)−1

T0i,�ΔTi,�:m. (38)

This is a feature of the process model (37) being reliant on the
inputs of Robot i in a separable way, meaning that the inputs of
Robot i can simply be post-multiplied in (37). Robot i computes
its RMI iteratively, starting with ΔTi,�:� = 1, and updating it
when a new input measurement arrives as

ΔTi,�:k+1 = ΔTi,�:kUi,k. (39)

In order to linearize the RMI to be used in an EKF, a perturbation
of the form

ΔTi,�:m = ΔT̄i,�:m Exp(δwi,�:m)

is defined, where δwi,�m ∈ R
9 is some unknown noise parame-

ter associated with the RMI, which is a consequence of the noise
associated with every input measurement. Despite ΔTi,�:m

being an element of DE2(3), the above Exp is the exponential
operator in SE2(3). In addition, a right-perturbation is chosen
to match the perturbation on U derived in (33), which simplifies
the subsequent derivation, but a left-perturbation could also have
been chosen.

Perturbing (39) with respect to the RMI itself then yields

ΔT̄i,�:k+1 Exp(δwi,�:k+1) = ΔT̄i,�:k Exp(δwi,�:k)Ūi,k

= ΔT̄i,�:kŪi,k Exp(Ad(Ū−1
i,k)δwi,�:k),

which can be simplified to give

δwi,�:k+1 = Ad(Ū−1
i,k)δwi,�:k. (40)

Meanwhile, perturbing the RMI relative to the input noise using
(33) yields

ΔT̄i,�:k+1 Exp(δwi,�:k+1) = ΔT̄i,�:kŪi,k Exp(Li,kδui,k),

which can also be simplified to give

δwi,�:k+1 = Li,kδui,k. (41)

C. Asynchronous-Input Filter

Taking advantage of the separability of the process model in
the neighbor’s input measurements, an asynchronous-input filter
can be designed. The key idea here is to use two process models,
one of the form

T 0i,k+1 = U−1
0,kT0i,k, T 0i,k+1 ∈ DE2(3) (42)

at � < k < m− 1 when there is no input information from
Robot i, and another of the form

T0i,m = U−1
0,m−1T 0i,m−1ΔTi,�:m (43)

when propagating from k = m− 1 to m as Robot i communi-
cates the RMI ΔTi,�:m. Note that T denotes an intermediate
state estimate that is not an element of SE2(3). Only when the
IMU measurements of the neighboring robot are incorporated
does the estimated state restore its original SE2(3) form.
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Algorithm 2: Algorithm for One Time-Step of the Proposed
on-Manifold EKF Running on Robot 0.

The following is the pseudocode for Robot 0’s EKF at
time-step k. Let �p denote the last time Robot
p ∈ {0, . . . , n} communicated with one of its neighbors.
Therefore, at time-step k − 1, Robot 0 has the RMI
ΔT0,l0:k−1, an intermediate estimate of neighboring
robots’ relative poses, T̂ 0q,k−1, q ∈ {1, . . . , n}, as well
as an estimate of the relative clock states. Robot 0
additionally gets an IMU measurement, allowing it to
compute U0,k−1. The EKF is then as follows.

1: Propagate RMI using ΔT0,l0:k = ΔT0,l0:k−1U0,k−1

and its covariance using (40), (41).
2: if ranging with neighbor i then
3: Communicate ΔT0,l0:k and its covariance.
4: Generate 5 pseudomeasurements using (15)–(19).
5: Propagate relative pose state estimates in time using

Ť 0p,k = U−1
0,k−1T̂ 0p,k−1, p ∈ {1, . . . , n}, p = i,

Ť0i,k = U−1
0,k−1T̂ 0i,k−1ΔTi,�i:k,

and the clock state estimates using Section VI-D.
6: Propagate the state-error covariances using (44), (45)

and Section VI-D.
7: Do an on-manifold EKF correction step [41] using the

pseudomeasurements to get T̂ 0p,k and T̂0i,k.
8: Initiate a new RMI ΔT0,k:k = 1 with covariance 0.
9: else if neighbors i and j are ranging then

10: Generate 8 pseudomeasurements using (15)–(19).
11: Propagate relative pose state estimates in time using

Ť 0p,k = U−1
0,k−1T̂ 0p,k−1, p ∈ {1, . . . , n}, p = i, j,

Ť0i,k = U−1
0,k−1T̂ 0i,k−1ΔTi,�i:k,

Ť0j,k = U−1
0,k−1T̂ 0j,k−1ΔTj,�j :k,

and the clock state estimates using Section VI-D.
12: Propagate the state-error covariances using (44), (45)

and Section VI-D.
13: Do an on-manifold EKF correction step [41] using the

pseudomeasurements to get T̂ 0p,k, T̂0i,k, and T̂0j,k.
14: else if no one is ranging then
15: Propagate relative pose state estimates in time using

Ť 0p,k = U−1
0,k−1T̂ 0p,k−1, p ∈ {1, . . . , n},

and the clock state estimates using Section VI-D.
16: Propagate the state-error covariances using (44) and

Section VI-D.
17: end if

Given that (42) is of the same form as (29) with Ui,k = 1,
linearization is straightforward and follows Section VI-C

δξ0i,k+1 = Ad(Ū−1
0,k)δξ0i,k − L0,kδu0,k. (44)

Similarly, (43) is of the same form as (29) withUi,k = ΔTi,�:m,
so the linearization with respect to the state is the same as (44),
giving

δξ0i,m = Ad(Ū−1
0,m−1)δξ0i,m−1

− L0,m−1δu0,m−1 +Ad(T̄0i,m)δwi,�:m. (45)

A summary of the proposed on-manifold EKF is shown in
Algorithm 2.

D. Equivalence to the No Communication Constraint Case

In the absence of communication constraints, each robot
would have access to all its neighbors’ IMU measurements at
all times. As explained in Section VII-A, this is not possible,
so that preintegration is needed. It is shown in (38) that the
state can be propagated using RMIs in a manner equivalent to
the case with no communication constraint. In this section, it is
shown that computing the uncertainty propagation for the state is
also equivalent in both cases, despite the Jacobians used being
different. This is in fact a consequence of the structure of the
Jacobians when perturbing the state from the left.

1) No Communication Constraints: When there are no com-
munication constraints and IMU measurements of neighbors are
available at all times, the models shown in Section VI can be used
to propagate the state. The covariance of the state is propagated
using (30) and (34), which for two nonadjacent timestamps �
and m would be written as

δξ0i,m

= Ad(ΔT0,�:m)−1δξ0i,� −
m−1∑
k=�

Ad(ΔT0,k+1:m)−1L0,kδu0,k

+

m−1∑
k=�

Ad(ΔT−1
0,k+1:mT̄0i,k+1)Li,kδui,k. (46)

2) With Preintegration: First, the uncertainty of the RMI can
be computed using (40) and (41) as

δwi,�:m =

m−1∑
k=�

Ad(ΔTi,k+1:m)−1Li,kδui,k.

Note that the RMI gets communicated at time-step m, so from
time-step � to m− 1 the state propagation occurs only with the
IMU measurements of Robot 0 as shown in (42). The uncertainty
propagation from timestamp � to m− 1, then, follows as per
(44), which can be written as

δξ0i,m−1 = Ad(ΔT0,�:m−1)
−1δξ0i,�

−
m−2∑
k=�

Ad(ΔT0,k+1:m−1)
−1L0,kδu0,k.

Meanwhile, propagating the uncertainty from timestamp m− 1
to m using the RMI as shown in (43), then, follows as per (45)
to give

δξ0i,m

= Ad(ΔT0,�:m)−1δξ0i,� −
m−1∑
k=�

Ad(ΔT0,k+1:m)−1L0,kδu0,k

+Ad(ΔT−1
0,�:mT̄0i,�ΔTi,�:m)δwi,�:m

= Ad(ΔT0,�:m)−1δξ0i,� −
m−1∑
k=�

Ad(ΔT0,k+1:m)−1L0,kδu0,k

+

m−1∑
k=�

Ad(ΔT−1
0,k+1:mΔT−1

0,�:k+1T̄0i,�ΔTi,�:k+1)Li,kδui,k,

which, using (38), simplifies to be exactly equal to (46).
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E. Communication Requirements

The proposed multi-robot preintegration approach provides
an alternative efficient way of communicating odometry infor-
mation as compared with communicating the individual IMU
measurements. When sending IMU measurements, no covari-
ance information is required as the covariance matrix is typically
a fixed value that can be assumed common among all robots
if they all share the same kind of IMU. Meanwhile, when
sending an RMI, the components of a corresponding 9× 9
positive-definite symmetric matrix representing its computed
uncertainty must also be sent, as this is not constant but rather a
function of the individual inputs.

Each IMU measurement consists of six single-precision
floats, three for the gyroscope, and three for the accelerometer
readings, for a total of 24 bytes. Meanwhile, each RMI can
be represented using ten single-precision floats and the cor-
responding covariance matrix using the upper triangular part
of the 9× 9 matrix, which requires communicating additional
45 single-precision floats. Therefore, sending one RMI and its
covariance matrix requires over 220 bytes of information. As
such, unless an RMI replaces more than nine IMU measure-
ments, it is sometimes more efficient to communicate the raw
IMU measurements. Nonetheless, using the proposed multirobot
preintegration framework has the following advantages (in ad-
dition to the discussion in Section VII-A).

1) It overcomes the need for variable amount of communi-
cation, as the RMI and its covariance matrix are of fixed
length but a varying number of IMU readings might be
accumulated in between two instances of a robot ranging.
This consequently eases implementation and provides a
more reliable system.

2) It provides robustness to loss of communication, as a
robot re-establishing communication with its neighbors
after a few seconds would not be able to send over all the
accumulated IMU information.

3) It reduces the amount of processing required at neighbors,
as the input matrices Ui,k are premultiplied at Robot i on
behalf of all its neighbors.

4) It overcomes the need to know the noise distribution of the
neighbors’ IMUs, which would be useful if not all robots
had the same IMU.

5) It allows easy integration with IMU-bias estimators and
approaches that dynamically tune the covariance of the
IMU measurements, without needing to send the bias
estimates or the tuned covariances over UWB.

In addition, UWB protocols by default allow 128 bytes of
information to be sent per message transmission [42], for a total
of 256 bytes per transceiver in each TWR instance. Given that
each transceiver only needs to send 2 bytes of frame-control
data per signal (thus, 4 bytes of frame-control data in total) [42]
and a total of three single-precision timestamps (thus, 12 bytes
of timestamps), there is enough room for 220 bytes required to
send an RMI. Note that if more information is required, some
modules, such as DW1000, allow up to 1024 bytes of data per
message transmission [43].

TABLE I
SIMULATION PARAMETERS BASED ON THE ICM-20689 IMU AND THE

DWM1000 UWB TRANSCEIVER

VIII. SIMULATION RESULTS

To evaluate the benefits of using passive listening on the
estimation accuracy of relative pose states, the clock dynamics
and quadcopter kinematics have been simulated. The clocks’
evolution is modeled relative to a “global time” using the sim-
ulating computer’s own clock, while the absolute-state quad-
copter kinematics are simulated relative to some inertial frame.
Noisy IMU and timestamp measurements are then modeled and
fed into the CSRPE algorithm to estimate the relative clock and
pose states.

To evaluate the proposed approach, the following three
datasets are simulated.

1) S1: A single run with four quadcopters.
2) S2: In total, 100 Monte Carlo trials with 3–7 quadcopters.
3) S3: In total, 500 Monte Carlo trials with four quadcopters.
The trajectory of the quadcopters in the case of a system with

three robots is shown in Fig. 2, and the simulation parameters
are given in Table I. The simulated trajectories are 60 s long,
and each quadcopter covers a distance between 60 and 218 m,
with a maximum speed of 5.5 m/s. The maximum and mean
angular velocities are 1 and 0.3 rad/s, respectively. Following a
periodic sequence, each pair of transceivers performs in turn a
ranging transaction, except for pairs of transceivers on the same
robot. The proposed algorithm is then tested on each dataset and
compared with the following two scenarios.

1) Centralized: A hypothetical centralized scenario where
each robot has access to range measurements between
neighbors in the absence of passive listening. This differs
from the proposed framework in that the pseudomeasure-
ments associated with passive listening do not exist, and
that this is practically impossible without passive listening
or some other communication media. This serves as the
benchmark on what is the best achievable estimator using
existing methods.

2) No Passive Listening: A decentralized approach but in the
absence of passive listening, meaning that robots neither
have access to the passive listening pseudomeasurements
nor range measurements between neighbors. This serves
as the benchmark on what is currently a practically imple-
mentable solution without requiring a central processor or
additional communication media.

The evaluation is based on the following three criteria.
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Fig. 8. Error plots and ±3σ bounds (shaded region) for Robot 0’s estimate of Robot 1’s relative pose for Simulation S1, comparing the centralized and proposed
approaches. (a) Centralized. (b) With passive listening.

Fig. 9. Error plots and ±3σ bounds (shaded region) for Robot 0’s estimate of Robot 1’s relative pose for Simulation S1, comparing the decentralized no-passive
listening and proposed approaches. The right figure is a zoomed-out version of Fig. 8(b). (a) No passive listening. (b) With passive listening.

1) Accuracy: The accuracy of the proposed algorithm as
compared with the case with no passive listening is
quantified using error plots and the root-mean-squared-
error (RMSE), which for the pose estimation error ek =
Log(T̂kT

−1
k ) is computed as

RMSE �
√

1

N + 1

∑N

k=0
eTkek

for N + 1 time-steps.
2) Precision: The precision of the proposed algorithm is

quantified using ±3σ-bound regions about the estimate,
which represent a 99.73% confidence bound under a Gaus-
sian distribution assumption.

3) Consistency: A consistent estimator is an estimator with
a modeled precision that reflects the true precision of
its estimate. In more specific terms, a consistent esti-
mator outputs a covariance matrix on its estimate that
is representative of the true uncertainty of that estimate.
Consistency is evaluated using the normalized-estimation-
error-squared (NEES) test [44, Sec. 5.4].

A. Estimation Accuracy and Precision

The error plots for the relative pose estimate of Robot 1
relative to Robot 0 in Simulation S1 are shown in Figs. 8 and 9.
Passive listening reduces the positioning RMSE by 29.4% from
0.204 to 0.144 m as compared with the centralized approach,

Fig. 10. Error norm for Robot 0’s estimate of Robot 1’s relative pose for
Simulation S1.

and by 55.96% from 0.327 to 0.144 m when compared with
the case of no passive listening. In addition, passive listening
produces at almost every time-step a position error with smaller
norm, as shown in Fig. 10. The proposed estimator is also
significantly more confident in its estimate, as shown by the
covariance bounds in Figs. 8 and 9.

This improvement in localization performance can be at-
tributed to more measurements and stronger cross-correlation
between the different states when passive listening measure-
ments are available. As shown in Fig. 11, passive listening results
in the clock state of a transceiver not drifting significantly in
between instances where this transceiver is ranging. This brings

Authorized licensed use limited to: McGill Libraries. Downloaded on September 14,2024 at 02:08:39 UTC from IEEE Xplore.  Restrictions apply. 



2424 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Fig. 11. Error plots and ±3σ bounds (shaded region) for Robot 0’s estimate of the clock states of Transceivers s0, f1, and s1 relative to Transceiver f0 for
Simulation S1. These plots are zoomed in to a window of 4 s to show clearly the cycle of expanding and contracting uncertainty in the clock estimates as the
transceiver alternates between active ranging and passive listening. (a) No passive listening. (b) With passive listening.

TABLE II
AVERAGE RMSE (ARMSE) FOR ALL TRIALS OF ROBOT 0’S ESTIMATE OF

NEIGHBORING ROBOTS’ RELATIVE POSE FOR SIMULATION S2

down the clock offset RMSE of Transceiver f1, for example, by
59.31% from 1.155 to 0.470 ns when compared with the case
with no passive listening.

The improvement in performance can also be seen as the num-
ber of robots is increased, as given in Table II for the Simulation
S2. Because only one pair of transceivers can communicate at a
time, in the absence of passive listening the rate at which each
transceiver participates in a ranging transaction decreases with
the number of transceivers, and as a result the overall localiza-
tion performance degrades. With passive listening on the other
hand, adding robots does not result in longer periods without
measurements and the measurement rate per robot remains the
same. In fact, it turns out that adding robots in the presence
of passive listening produces better performance due to spatial
variations in the range-measurement sources [45]. This is also
the case for the centralized estimator.

To provide further insight into the contribution of passive
listening measurements on the behavior of the estimator, the
distribution of the RMSEs of the position and attitude estimates
of all robots in Simulation S3 are visualized in Fig. 12. Not
only does the proposed approach significantly outperform the no
passive listening approach, but it also matches the centralized
approach, which is typically the best possible solution under
an assumption of the availability of a central processor. In
fact, the proposed framework slightly outperforms the standard

centralized approach due to the availability of additional pseu-
domeasurements.

B. Consistency

Given that the estimator is an EKF, consistency cannot
be guaranteed due to linearization and discretization errors.
Nonetheless, the proposed on-manifold framework can charac-
terize banana-shaped error distributions that result from range
measurements, as shown in Fig. 3 more efficiently. Conse-
quently, the error distribution appears to be well characterized
by the estimator, as shown in Figs. 8–11, as the error trajectory
typically lies within the ±3σ bounds.

A better evaluation of the consistency of the estimator is a
NEES test, which is performed over the 500 trials of Simulation
S3, and is shown in Fig. 13. During the first few seconds when
the quadcopters are taking OFF from the ground, their geometry
and low speeds result in a weakly observable system [36],
which results in overconfidence of the estimator as linearization-
based filters can correct in unobservable directions [46], [47].
Nonetheless, the estimator then converges toward consistency,
although it is never perfectly consistent due to linearization and
discretization errors, which is a feature of EKFs. This can be
solved by slightly inflating the associated covariance matrices
used in the filter.

IX. EXPERIMENTAL RESULTS

The proposed approach is tested on multiple experimental tri-
als. The ranging protocol discussed in Section V is implemented
in C on custom-made boards fitted with DWM1000 UWB
transceivers [43]. Two boards are then fitted to Uvify IFO-S
quadcopters approximately 45 cm apart. The experimental setup
is shown in Fig. 1. Three of these quadcopters are then used for
the experimental results shown in this section, with multiple
trajectories approximately 75 s long similar to the one shown in
Fig. 14 in a roughly 5 m × 5 m area. The quadcopters in the
experimental trajectories each cover a distance between 20 and
35 m, with a maximum speed of 3.75 m/s. The maximum and
mean angular velocities are 2.12 and 0.3 rad/s, respectively. In
order to analyze the error in the pose estimates of the robots, a
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Fig. 12. Violin and box plots showing the distribution of the position and attitude RMSEs for Simulation S3. The envelope shows the relative frequency of RMSE
values. The box plot shows the median as a white dot, while the first and third quartile of the data are represented using the lower and upper bound of the thick
black bar, respectively. (a) Position RMSE. (b) Attitude RMSE.

Fig. 13. 500-trial NEES plot for the proposed estimator on Simulation S3.

12-camera Vicon motion-capture system is used to record the
ground-truth pose of each quadcopter.

To enable the six transceivers to take turn ranging, the
common-list protocol discussed in Section V is implemented
using the robot operating system (ROS). This allows each robot
to range with its neighbors at a rate of 90 Hz, and collect passive
listening measurements at a rate of 150 Hz. These UWB mea-
surements are corrected for antenna delays and power-induced
biases using [6], before fusing them with the onboard IMU
and height measurements in the proposed EKF. An ICM-20689
IMU is used with characteristics similar to the simulated ones
given in Table I, and the height measurements are obtained from
a downward-facing camera. The height measurement error is
assumed Gaussian with 5 cm of standard deviation. To reject
outliers in the range and passive listening measurements, the
normalized-innovation-squared test is used in the filter [44,
Sec. 5.4].

Note that before flight, all transceivers are allowed to range
with one another to initialize the relative clock offset states
using the second pseudomeasurement from Section V, along-
side a pseudomeasurement yγ = R̃3−R̃2

T̃3−T̃2 − 1 ≈ γf1s2 that is not
used in the filter. Meanwhile, the IMU biases are initialized
using the motion capture system and are then assumed constant
throughout the experiment, which is sufficient for the duration
of the experiments presented here. Addressing IMU biases for
longer experiments is presented in Section X-A.

TABLE III
RMSE OF ROBOT 0’S ESTIMATE OF NEIGHBORING ROBOTS’ RELATIVE POSE

FOR MULTIPLE EXPERIMENTAL TRIALS

The pose-error plots for one of the trials are shown in Fig. 15
for the centralized approach, and with and without fusing pas-
sive listening measurements. The RMSE comparison for four
different trials with varying motion are given in Table III. Al-
though all scenarios result in error trajectories that fall within
the error bounds, it is clear that with the additional passive
listening measurements available to the robot at 150 Hz, the
relative position estimates in particular become significantly
less uncertain. In addition, these error plots correspond to the
first row in Table III, showing that the improvement in the
confidence of the estimator is additionally accompanied with
a 12.56% and 21.97% reduction in the RMSE as compared
with the centralized and no passive listening position RMSE,
respectively. This reduction in RMSE goes up to 23.28% and
48.20%, respectively, for one of the runs when passive listening
measurements are utilized.

X. FURTHER PRACTICAL CONSIDERATIONS

A. IMU Biases

The IMU measurements typically suffer from time-varying
biases, which must be estimated as part of the state for long-term
navigation. It can be shown that, when modeling the evolution
of biases as a random walk, the IMU biases can be incorporated
into the process model while still maintaining the differential
Sylvester equation form presented in Section VI-A. To do so,
each Robot i estimates its own gyroscope bias βgyr,i

i in its own
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Fig. 14. (Left-hand side) In total, three quadcopters in the experimental space. (Middle) The experimental trajectory for Trial 1, where each color represents the
trajectory of a different quadcopter and the grid represents a roughly 5 m × 5 m area. (Right-hand side) The experimental trajectory for Trial 2.

body frame, and uses this estimate to correct the IMU measure-
ments and inflating the covariance when constructing the RMI.
In addition, each robot estimates a relative accelerometer bias to
every neighbor in the robot’s own body frame, which does not
affect the computed RMI. For example, Robot 0’s estimate of
Robot i’s relative accelerometer bias is defined as

βacc,0i
0 � βacc,0

0 −C0iβ
acc,i
i

where βacc,i
i is Robot i’s accelerometer bias. The interested

reader can refer to [48] for derivation of the pose and bias
process models, corresponding linearization, preintegration, and
simulation and experimental results.

B. Incomplete and Dynamic Communication Graphs

The proposed framework has been evaluated under the as-
sumptions of a full communication graph, no packet drop, and
no communication failures. Nonetheless, these are all real-world
problems that must be addressed before implementing the pro-
posed framework. This is beyond the scope of this article;
nonetheless, a brief discussion regarding these issues is provided
in this section.

The ranging protocol and the proposed estimator do not re-
quire a full communication graph and the lack of communication
failures. However, the common-list MAC protocol does. The
common-list MAC protocol is a very simple approach made
possible only due to passive listening, and is ideal for small teams
of robots that will always be within a communication range
with one another, thus allowing a full communication graph.
Whenever a ranging transaction between a pair of transceivers
fails, it is reattempted multiple times until a timeout is triggered,
after which the ranging pair and all other robots who have not
heard a message for the duration of the timeout move onto the
next entry in the list. The protocol can handle a robot’s commu-
nication failure by having each robot eliminate an element in the
list when it fails more than κ times, where κ is a user-defined
threshold.

When extending to larger teams, it is not possible to assume
that all robots are within communication range of one another,
thus invalidating the full communication graph assumption.
In addition, robots might fall in and out of range with one
another over time, thus necessitating an incomplete dynamic
communication graph model. In such scenarios, the common-list
protocol is no longer simple, as robots need to know what other
robots out of communication range are doing. Therefore, such

systems may benefit from other MAC protocols, such as token
passing [49, Sec. 3.3], which is still possible with the proposed
ranging protocol and estimator as they are independent of the
choice of the MAC protocol. The benefits of passive listening
thus still stand, not just due to additional measurements, but
because it also allows each robot to maintain a list of neighbors
within communication range.

Another implication of incomplete graphs is that each robot
only estimates relative poses for the subset of robots that lie
within its communication range. This is useful as it reduces
the dimensionality of the onboard estimator, since each robot
only estimates the relative states of m < n neighboring robots.
However, having dynamic graphs due to robots falling in and out
of the communication range of the robot mean that the robots
must initialize the states of neighbors when they appear and
marginalize out the states of neighbors that have not been within
the communication range for an extended period of time. The
initialization can potentially be done by listening to a window of
measurements from the new neighbor and formulating a least-
squares problem.

XI. CONCLUSION

In this article, the problem of relative extended pose esti-
mation has been addressed for a team of robots each equipped
with UWB transceivers. A novel ranging protocol is proposed
that allows neighboring robots to passively listen in on the
measurements without any underlying assumptions on the hier-
archy of the communication. This is, then, utilized to implement
a simple MAC protocol and an efficient means for sharing
preintegrated IMU information, which is then fused with the
UWB measurements in a filter that estimates both the clock
states of the transceivers and the relative poses of the robots. The
relative poses and the preintegration are formulated directly on
SE2(3). This is then all evaluated in simulation using different
numbers of robots and Monte Carlo trials, and in experiments
using multiple trials of three quadcopters each equipped with
two UWB transceivers. The method is shown to improve the
localization performance significantly when compared with
centralized scenarios or to the case of no passive listening
measurements.

This work can be extended to address complications that
arise in wireless communication, such as packet drop. When
a packet drop occurs, neighbors miss an RMI that is required to
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Fig. 15. Error plots and±3σ bounds (shaded region) for Robot 0’s estimate of
Robot 1’s relative pose for experimental trial 1. (a) Centralized. (b) No passive
listening. (c) With passive listening.

propagate their estimates forward, and therefore, this must be
addressed in a real-world application, potentially by providing a
means for robots to request a missed RMI from their neighbors.
Future work will additionally consider more efficient MAC
protocols where only a subset of the transceivers ranges with
one another in pairs while the remaining transceivers are always
passively listening. Alongside the discussion in Section X, an-
other potential extension of this article includes collaboration
between robots, as robots can share their state estimates with
neighbors to reach a consensus on the clock and relative pose
states.

APPENDIX A
FOLD INCREASE IN MEASUREMENTS

When there are n+ 1 robots and two transceivers per robot,
the total number of transceivers isnt = 2(n+ 1). Therefore, the

number of ranging pairs with transceivers on distinct robots is

np =
2(n+ 1)(2(n+ 1)− 1)

2
− (n+ 1) = 2n(n+ 1).

The number of direct measurements between all robots is then
2np (one range and one offset measurement per pair), while
the number of passive listening measurements recorded at all
robots is np(3(nt − 2)) = 6nnp. Therefore, the fold increase in
measurements is

2np + 6nnp

2np
= 1 + 3n

when considering a centralized approach where passive listening
measurements from all robots are available.

A similar analysis can be done from the perspective of one
robot that does not have access to passive listening measure-
ments recorded at neighboring robots. Without passive listening,
it can be shown that the robot only gets 8n distinct measure-
ments, while with listening-in on neighboring robots’ messages,
the robot gets 2np − 8n new measurements from the direct
measurements between the neighbors and 12n2 new passive lis-
tening measurements. This can be shown to be a ( 12 + 2n)-fold
increase in the number of measurements from the individual
robot’s perspective.

APPENDIX B
LINEARIZING THE RANGE MEASUREMENT MODEL

Consider as in (14) an expression of the form

d = ‖(Π (T2r̃2 −T1r̃1))‖ (47)

where T1,T2 ∈ SE(3) and r1, r2 ∈ R
5. Squaring both sides

and perturbing the measurement and the pose states yield

(d̄+ δd)2 =
(
Π
(
Exp(δξ2)T̄2r̃2 − Exp(δξ1)T̄1r̃1

))T
(·)

which, using (2), can be expanded to give

d̄2 + 2d̄δd ≈ (ΠT̄2r̃2)
TΠT̄2r̃2 + (ΠT̄1r̃1)

TΠT̄1r̃1

− (ΠT̄2r̃2)
TΠT̄1r̃1 − (ΠT̄1r̃1)

TΠT̄2r̃2

−(Πδξ∧2T̄2r̃2)
TΠT̄1r̃1−(ΠT̄2r̃2)

TΠδξ∧1T̄1r̃1

−(Πδξ∧1T̄1r̃1)
TΠT̄2r̃2−(ΠT̄1r̃1)

TΠδξ∧2T̄2r̃2

where higher order terms have been neglected. Canceling out
the nominal terms on both sides, using the fact that each term is
scalar, and recalling (1)

2d̄δd = − 2(ΠT̄2r̃2)
TΠδξ∧1T̄1r̃1 − 2(ΠT̄1r̃1)

TΠδξ∧2T̄2r̃2

= − 2(ΠTΠT̄2r̃2)
T(T̄1r̃1)

	δξ1

− 2(ΠTΠT̄1r̃1)
T(T̄2r̃2)

	δξ2.

Therefore, the linearized model for (47) is

δd = − 1

d̄
(ΠTΠT̄2r̃2)

T(T̄1r̃1)
	δξ1

− 1

d̄
(ΠTΠT̄1r̃1)

T(T̄2r̃2)
	δξ2.
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APPENDIX C
DISCRETIZING THE INPUT MATRIX

The matrices Ũ0,k and Ũi,k in (29) are of the general form

Ũ =

[
u∧ e4
01×4 0

]
(48)

where u = [ ωT αT ]T, (·)∧ is the wedge operator in SE(3),
and e4 = [01×3 1]T. Consequently,

U = exp(ŨΔt) =

∞∑
�=0

1

�!

(
ŨΔt
)�

= 1+

[
u∧ e4
0 0

]
Δt+

1

2!

[
(u∧)2 u∧e4
0 0

]
(Δt)2

+
1

3!

[
(u∧)3 (u∧)2e4
0 0

]
(Δt)3 + · · ·

=

[∑∞
�=0

1
�! (u

∧Δt)�
∑∞

�=0
1

(�+1)! (u
∧Δt)�e4Δt

0 1

]
. (49)

Note that
∑∞

�=0
1
�! (u

∧Δt)� = Exp(uΔt), where Exp is the
SE(3) exponential operator, giving

∞∑
�=0

1

�!
(u∧Δt)� =

[
Exp(ωΔt) ΔtJl(ωΔt)α

0 1

]
. (50)

Jl is the left Jacobian of SO(3), which is of the form

Jl(ψ) =

∞∑
�=0

1

(�+ 1)!

(
φφ×)�

=
sinφ

φ
1+

(
1− sinφ

φ

)
φφT +

1− cosφ

φ
φ×

where φ = |ψ| and φ = ψ/φ. Meanwhile,
∞∑
�=0

1

(�+ 1)!
(u∧Δt)�

= 1+
1

2!

[
ω× α
0 0

]
Δt+

1

3!

[
(ω×)2 ω×α

0 0

]
(Δt)2

+
1

4!

[
(ω×)3 (ω×)2α

0 0

]
(Δt)3 + · · ·

=

[∑∞
�=0

1
(�+1)! (ω

×Δt)�
∑∞

�=0
1

(�+2)! (ω
×Δt)�αΔt

0 1

]

=

[
Jl(ωΔt) Δt

2 Nl(ωΔt)α
0 1

]
(51)

where

N(ψ) = 2

∞∑
�=0

1

(�+ 2)!

(
φφ×)�

= φφT + 2

(
1

φ
− sinφ

φ2

)
φ× + 2

cosφ− 1

φ2
φ×φ×.

Substituting (50) and (51) back into (49) gives

U =

⎡
⎣Exp(ωΔt) ΔtJl(ωΔt)α Δt2

2 Nl(ωΔt)α
1 Δt

1

⎤
⎦ .
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