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Abstract

This thesis examines the utilization of ultra-wideband (UWB) radio for robot navigation
in indoor applications. UWB, a wireless communication technology, offers a means of gen-
erating distance (or range) measurements and establishing communication channels among
mobile robots and fixed anchors at known locations. When fixed anchors are present, UWB
can be harnessed for precise localization, enabling, for example, the tracking of robots in
warehouse applications. In unexplored environments lacking a fixed infrastructure, UWB
transceivers installed on different robots facilitate inter-robot ranging and communication,
thereby enabling relative localization, an essential prerequisite for tasks such as maintaining
a group formation, collaboratively mapping an area, or ensuring effective collision avoidance.
In order to maximize the potential of UWB for localization purposes, it becomes impera-
tive to tackle fundamental challenges of UWB, such as clock synchronization and the choice
of ranging protocol, concurrently with the development of the state estimation algorithm.
Conventionally, these two issues have been addressed separately.

The primary objective of this thesis is to resolve both the underlying low-level UWB
ranging and communication performance challenges, as well as the state estimation problem,
ultimately providing a practical, robust, and implementable solution for indoor navigation.
To this end, this thesis delves into the matter of UWB measurement calibration, aiming to
enhance ranging accuracy and characterize measurement uncertainty for use in a probabilis-
tic framework. Subsequently, the selection of an appropriate ranging protocol is motivated to
facilitate localization and efficient inter-robot communication. Lastly, this thesis employs
UWBmeasurements within a filtering framework to tackle the problem of state estimation,
encompassing both a scenario involving a single robot performing a closed-loop teach-and-
repeat experiment and a multi-robot scenario where the robots perform on-manifold relative
localization and attitude estimation using preintegration techniques. Comprehensive test-
ing of all proposed algorithms is conducted through simulation and real-world experiments
employing custom-built UWB modules fitted onto quadcopters.
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Résumé

Cette thèse examine l’utilisation de la radio à bande ultra-large (UWB) pour la navigation
robotique en l’absence de GPS. L’UWB, une technologie de communication sans fil, permet
d’obtenir des mesures de distance et de communiquer entre des robots mobiles et des ancres
fixes à des positions connues. En présence d’ancres fixes, l’UWB peut être exploité pour une
localisation précise, ce qui permet par exemple de localiser des robots dans des entrepôts.
Dans les environnements inconnus dépourvus d’infrastructure fixe, les émetteurs-récepteurs
UWB installés sur différents robots facilitent la télémétrie et la communication inter-robots,
permettant ainsi une localisation relative, nécessaire pour des tâches telles que le maintien
de la formation d’un groupe, la cartographie collaborative d’une zone ou l’évitement des
collisions. Afin de maximiser le potentiel de l’UWB à des fins de localisation, il est impératif
de relever les défis fondamentaux de l’UWB, tels que la synchronisation des horloges et
le choix du protocole de télémétrie, en même temps que le développement de l’algorithme
d’estimation de l’état. Traditionnellement, ces deux questions ont été traitées séparément.

L’objectif principal de cette thèse est de résoudre à la fois les défis sous-jacents de bas
niveau en matiére de performance de communication et de télémétrie UWB, ainsi que le
probléme d’estimation d’état, pour finalement fournir une solution pratique, robuste et im-
plémentable pour la navigation intérieure. À cette fin, cette thèse se penche d’abord sur
la question de la calibration des mesures UWB, dans le but d’améliorer la précision de
la télémétrie et de caractériser l’incertitude des mesures pour une utilisation dans un cadre
probabiliste. Ensuite, un protocole de télémétrie approprié est sélectionné pour faciliter
la localisation et des communications inter-robots efficaces. Enfin, cette thèse utilise les
mesures UWB dans un cadre de filtrage pour aborder le problème d’estimation d’état,
d’abord pour un scénario impliquant un seul robot effectuant une tâche de « teach-and-
repeat » en boucle fermée, puis pour un scénario dans lequel plusieurs robots estiment leurs
position et attitude relatives à l’aide de techniques de pré-intégration et de filtrage sur des
groupes de Lie. Des tests complets des algorithmes proposés sont effectués par simulation
et au moyen d’expériences physiques utilisant des modules UWB fabriqués sur mesure et
montés sur des quadricoptéres.
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Preface

The problems explored in this thesis are mainly motivated by real-world challenges faced
while trying to use UWB to estimate the position of robots relative to one another. The
main issues that arose are

• the observability of relative positions, which are vector quantities, from just scalar
distance measurements,

• the UWB measurements suffering from systematic-bias and environment-dependent
errors,

• the lack of UWB communication protocols that allow robots to broadcast information,
and thus hindering the scalability of UWB-based navigation, and finally

• the need to utilize matrix Lie groups to implement on-manifold state-estimation algo-
rithms that better model the distributions generated from the range measurements.

This thesis addresses these issues by taking incremental steps towards the final goal of
realizing a practical and scalable UWB-based localization algorithm. The contributions and
novelties presented in this thesis can be categorized per chapter as follows.

• Chapter 3 [1]

– A rigidity-theory-based observability analysis is presented for any number of
robots estimating relative positions from range measurements.

– A sufficient condition that is independent of the relative motion of the robots is
derived for the observability of the three-dimensional relative positions when only
range measurements are available.

– The utilization of a two-tag framework in multi-robot systems is discussed to
allow the estimation of three-dimensional relative positions using just the range
measurements, an inexpensive IMU, and a magnetometer.

• Chapter 4 [2]

– A novel ranging protocol is proposed that is shown to mitigate the clock-skew-
induced bias.

– A scalable antenna-delay calibration algorithm is presented that is robust to out-
liers and pose-dependent bias.

xviii



– The bias and variance of the measurements are modelled as a function of first-
path power, and the proposed ranging protocol is utilized to overcome the need
to estimate the clock skew.

– The code for the full calibration procedure is attached as an open-access online
repository, which can be found at https://github.com/decargroup/uwb_calibration.

• Chapter 5 [3]

– An analytical model of the variance of ranging protocols is derived as a function
of the timing of message transmissions.

– The derived analytical variance is compared to the Cramer-Rao Lower Bound
(CRLB).

– An optimization problem is formulated as a function of the signal timings to
maximize the information collected in one unit of time.

– The effect of relative motion during ranging is analyzed.

• Chapter 6 [4]

– A ranging protocol is introduced that extends classical ranging protocols by al-
lowing robots to passively listen to the measurements between neighbours and
timestamp receptions, with no assumptions or imposed constraints on the robots’
hierarchy.

– The extended pose state is represented as an element of SE2(3), and an on-
manifold tightly-coupled simultaneous clock-synchronization and relative-pose es-
timator (CSRPE) is proposed.

– The concept of preintegration is developed for relative pose states on SE2(3) as
an alternative to sharing high-frequency IMU readings with neighbours.

– The communicated IMU measurements are incorporated in the CSRPE, where
the theory behind filtering with delayed inputs is developed as the preintegrated
IMU measurements arrive asynchronously from neighbouring robots.

• Chapter 7 [5]

– A probabilistic approximation of the propagated cross-covariance terms is pre-
sented when fusing information from loosely-coupled filters that do not necessarily
share a common set of states.

xix
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– The performance of the proposed filter is compared to a sigma-point-based Co-
variance Intersection (SPCI) estimator.

• Chapter 8 [6]

– A ranging protocol is proposed to allow a 3-tag robot to synchronize the clocks
of its tags and receive 3 range measurements from a fixed anchor with only one
ranging transaction.

– A novel UWB-based teach & repeat framework is presented for a vehicle moving
in an environment with spaced-out fixed anchors at unknown locations over a
large area.

Another contribution of this thesis is the evaluation of all the proposed algorithms and
protocols in simulation and in experiments. Millions of range measurements are collected
and hours of experimental flights are conducted to evaluate the performance and validate
the practicality of the proposed algorithms.

Additionally, special credit is given to Charles C. Cossette for his part in making the
experiments in this thesis possible and for the productive discussions that led to many of
the ideas presented in this thesis. Nonetheless, all the contributions claimed above are
independently developed by the Author of this thesis.

The topics addressed and the solutions presented in this thesis have a wide possibility of
applications. It is foolish to turn a blind eye to the possibility of evil with such technologies;
nevertheless, the Author hopes that this work instead acts as a catalyst for the change and
betterment of the world.

xx



Chapter 1

Introduction

(a) A simulated indoor scenario with 4 quadcopters and
2 ground vehicles.

(b) Three Uvify IFO-S quadcopters in a triangle
formation.

Figure 1.1: Two examples of teams of robots in an indoor setting.

The overall goal of this thesis is to develop a practical navigation solution for robots
utilizing ultra-wideband (UWB) radio. Robot navigation is the process in which a robot
understands where it is and perceives its environment, and this thesis mainly focuses on the
localization aspect of robot navigation. UWB is particularly attractive for robot navigation
as it is an inexpensive and low-power sensor that provides a means for robots to obtain
distance measurements and communicate with other robots at a high rate. As a result,
UWB is oftentimes used for localization in GPS-denied environments and as a communica-
tion medium when deploying multi-robot systems. This is crucial for applications such as
automated surveillance, search and rescue, infrastructure and mine inspections, collaborative
simultaneous localization and mapping (SLAM), and agricultural monitoring. Two examples
of team of robots in an indoor setting are shown in Figure 1.1. However, such applications in-
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CHAPTER 1. INTRODUCTION 2

volve an additional layer of complexity, as topics such as formation architectures and control,
communication protocols, calibration, collaborative localization, decentralization, and task
allocation must be addressed. Localization in particular is a core prerequisite for performing
any other task, such as control and motion planning.

Ever since the legalization of the unlicensed use of UWB radio in some parts of the
world in 2002, research into the potential uses of UWB in commercial systems has been
rapidly increasing. This has been particularly accelerated by the development of low-cost
and low-power single-chip wireless transceivers by Qorvo (formerly Decawave) [7]. Due to the
properties of UWB signals, different transceivers can communicate at high frequencies and
range with one another through time-of-flight (ToF) measurements. UWB transceivers have
been extensively utilized in lab environments for research purposes, usually in the presence
of fixed transceivers with known positions, or anchors, to evaluate range-based localization
algorithms. Additionally, UWB transceivers have been used in multi-robot applications
where each robot is equipped with a transceiver, allowing the robots to range with one
another.

The main limitation of current approaches associated with UWB-based localization is
that improving the performance of UWB range measurements is treated separately from the
choice of the localization algorithm. This therefore induces an unnecessary limitation at the
higher level when designing localization approaches. Furthermore, neglecting the limitations
of UWB systems oftentimes leads to impractical localization solutions.

To realize the full potential of UWB-based localization, this thesis simultaneously ad-
dresses the calibration procedure and protocols for UWB ranging and communication as
well as the problem of localization using state estimation algorithms. Without being subject
to UWB-based constraints, novel approaches are introduced that are more practical, more
scalable to larger teams of robots, and lead to better localization performance as compared
to the traditional counterparts. Additionally, this flexibility in designing ranging and com-
munication protocols allows the exploration of new applications of UWB-based localization.
Heavy emphasis is placed on the practicality of proposed solutions; therefore, all proposed
approaches are implemented on real experimental data. Significant effort has been allocated
to implementing proposed UWB protocols on custom-made UWB transceivers, which are
then fitted to quadcopters. More details on the hardware used in this thesis can be found in
Appendix A. Lastly, Lie group theory is utilized to represent the state of the quadcopters,
leading to the adoption of on-manifold state estimation tools.



CHAPTER 1. INTRODUCTION 3

1.1 Background and Related Work

The problem of robot navigation has been addressed using a wide range of sensors. Outdoor
applications typically rely on GPS receivers to localize a mobile robot using a constellation
of satellites [8, Chapter 11]; however, GPS measurements are known to be unreliable in
urban settings, dense environments, and indoors [9]. This has led to the development of
other localization solutions, such as ones that utilize cameras [10] or LIDARs [11]. Cameras
are particularly attractive due to their low cost, but they are prone to failure in low-light
conditions and when there are few features in the environment. LIDARs, on the other
hand, are more robust to lighting conditions, but are expensive, bulky, and require heavy
computational processing, thus not particularly suited for aerial vehicles.

These limitations have accelerated the deployment of wireless technologies such as Blue-
tooth [12], WiFi [13], and UWB [14] for localization purposes, particularly as they have the
additional benefit of allowing communication between robots. UWB is particularly attrac-
tive due to its low cost, low power consumption, compactness, and high ranging accuracy
and precision [15]. Most wireless technologies rely on fixed infrastructure such as WiFi ac-
cess points, Bluetooth beacons, or UWB anchors to localize the robots. However, this is
not always feasible, particularly in applications where the robots need to be deployed in un-
known environments. This necessitates the development of solutions that rely on inter-robot
ranging and communication, which is the focus of this thesis.

The building blocks associated with achieving efficient UWB-based localization span a
wide range of avenues. Range-based multi-robot localization in the absence of anchors is
challenging on its own even in the presence of a central computer that processes all the
information and in the absence of all the complications that arise with UWB systems. With
anchors, the common solution is to perform ranging between the anchors and the robots
being localized [14], [16], [17]. However, realizing an observable system with only range
measurements between robots and in the absence of anchors is non-trivial, as there is an
infinite number of positions that result in the same range measurements [1]. One way to
obtain an observable system is through utilization of a motion model, where the requirement
for observability then comes down to satisfying a persistency of excitation condition [18].
However, this requires consistent relative motion between the robots, which is limiting in
applications where, for example, the robots need to maintain a specific formation or be static
for a period of time. Alternatively, the use of multiple UWB transceivers per robot has also
been considered [19], [20].

Adding another layer of complexity are the practical complications associated with the
use of UWB systems. Although oftentimes simplified to just a system that outputs range
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measurements when designing localization approaches, UWB ranging is in fact a very in-
volved process. The range measurements obtained from UWB signals are a function of the
ToF between transmission and reception of a message between two distinct transceivers each
with their own clock. In order to provide centimetre-level accuracy, the clocks of the two
transceivers must be synchronized to within sub-nanosecond levels of accuracy. This is a
main factor that must be considered when designing the ranging protocol, and common
approaches include the time-difference-of-arrival (TDoA) and two-way ranging (TWR) pro-
tocols [15]. However, even these methods have their own limitations, prompting the recent
development of more advanced ranging protocols such as the double-sided TWR (DS-TWR)
protocol [21] or filtering approaches for clock synchronization [22].

Even when the clocks are perfectly synchronized, the use of UWB presents other potential
sources of error. Systematic delays in the timestamping of messages are common due to
manufacturing inaccuracies and can result in significant bias in the range measurements
[23]. Additionally, there exists a correlation between the errors in the range measurements
and the pose of the robot due to the lack of symmetry in the radiation pattern of the
UWB antennae [24]. Furthermore, the presence of objects or robots in the vicinity of the
region traveled by the UWB messages oftentimes results in positively-biased measurements
[15], which results in error distributions poorly modelled using Gaussian assumptions often
adopted in standard filtering applications such as the Kalman filter [25]. To address this,
some solutions involve attempting to detect the biased measurements using statistical tools
[14] or supervised learning algorithms [26], [27], while others model the distribution of the
noise to be non-Gaussian [28], [29]. More recently, a data-driven model of the relation
between the bias in the measurements and the received signal power has been proposed [30].

UWB-reliant teams of robots also have their own distinct set of problems. In order to
prevent message collision, only one pair of UWB transceivers can range at a time. This
is a major limitation that deems a centralized approach infeasible, as the robots cannot
all simultaneously broadcast information but rather ranging pairs have to communicate
sequentially. This poses three problems. First of all, some form of media-access control
(MAC) protocol needs to be implemented, such as the time-division multiple-access (TDMA)
MAC protocol [31]. Furthermore, the majority of the proposed multi-robot UWB-based
systems are restricted to a few number of robots as sequential pair-by-pair ranging generally
does not scale well to many robots. Lastly, when there is a need for broadcasting high-rate
sensor information such as from an inertial measurement unit (IMU), existing solutions rely
on a centralization assumption [1] or a limit of only two robots [32], [33]. Additionally, this
problem of efficient IMU-measurement sharing has not been considered for on-manifold pose
estimation using matrix Lie groups.
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Further deeming central processing infeasible is that it requires exponentially-growing
communication and processing capabilities; therefore, decentralization is a key factor in
achieving real-world applicability. The main challenge of decentralization is the cross-
correlations that develop between the state estimates of neighbouring robots, which, if ne-
glected, might lead to poor estimation performance [5], [34]. This is a classic decentralized
filtering problem and has been addressed from many different viewpoints, such as using
consensus algorithms [35] or Covariance Intersection (CI) [36]. These methods have been
used in obtaining relative pose estimates under certain assumptions [34], [37]–[39]. More
recently, general decentralization algorithms have been proposed using optimization algo-
rithms [40] and pseudomeasurements with CI [41]. However, to date, there has been no
general decentralization approach that is computationally efficient and scalable for range-
based multi-robot localization without strict assumptions on the measurements or topology
of the team, or relying on the CI approach, which incurs significant loss of information.

1.2 Outline

This thesis is a summary of the journey taken to achieve a practical localization approach for
robots utilizing UWB radio. The general necessary mathematical preliminaries are presented
in Chapter 2, but can be skipped by expert readers.

The body of this thesis starts with Chapter 3, where the problem of performing relative
position estimation in multi-robot systems is first presented. In this chapter, a rigidity-
theory-based observability analysis is performed for any number of robots in order to under-
stand the minimum amount of information required to be able to perform relative position
estimation in multi-robot systems using just range measurements. This leads to the deriva-
tion of a sufficient condition that can be satisfied by placing multiple UWB tags per robot
alongside an IMU and a magnetometer.

Despite showing the promise of multi-tag robots for UWB-based relative localization,
the performance achieved on experimental data proved the need for improving the quality
of the range measurements, which appeared to be biased and noisy. To address the bias
in the noise, in Chapter 4, a ranging protocol is proposed that is based on the DS-TWR
protocol, which is shown to yield less bias than standard algorithms. Additionally, a novel
bias calibration procedure is presented that takes into account both timestamping delays and
the relative-pose-dependent bias as a function of the received signal power. The uncertainty
of the range measurements are also characterized as a function of the received signal power.

On the thrust of improving the UWB range measurements, the goal of Chapter 5 is to
provide an understanding of the effect of varying the delay between message reception and
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message transmission in TWR on the variance of the measurement. To do so, an analytical
model of the variance of DS-TWR is derived as a function of the timing of message transmis-
sions, which is then compared to the Cramer-Rao Lower Bound (CRLB). An optimization
problem is then formulated as a function of the variance and the frequency of the measure-
ments for different message-timing values, allowing the choice of delays that maximize the
amount of information obtained from the range measurements in any unit of time.

Now, equipped with more accurate range measurements, Chapter 6 revisits the relative
pose estimation problem with practicality, scalability, and feasibility in mind. This involves
addressing the problems associated with the communication constraints introduced by the
transceivers’ inability to range in parallel. Firstly, in order to allow broadcasting ability of
messages, a ranging protocol is proposed that allows robots to “listen-in” on neighbouring
robots communicating with one another. This requires simultaneously estimating the clock
states of UWB transceivers alongside the relative pose states, which led to the development
of a novel on-manifold tightly-coupled simultaneous clock-synchronization and relative-pose
estimator (CSRPE) based on an extended Kalman filter (EKF). In order to share the IMU
information efficiently between robots, the concept of preintegration is developed for relative
pose states on SE2(3), and is used as a means of efficient data logging and communication
between robots.

Robots estimating relative poses of neighbours end up estimating similar states as their
neighbours, and it might be tempting to naïvely share and fuse these estimates. The issue
with such approaches, which is due to unmodelled cross-correlations, is addressed in Chap-
ter 7. A common approach to this problem is to use covariance intersection (CI), but an
alternative approach is presented that relies on approximating these cross-covariances using
sigma points based on knowledge of the neighbours’ process models. The performance of
this approach is shown to be far superior to CI as it is significantly more confident in its
estimates as less information is discarded.

Lastly, the knowledge acquired by studying the minimum requirements for range-based lo-
calizability, the calibrated range measurements, and the ability to implement custom ranging
protocols led to the development of a new application for UWB: a lightweight teach-and-
repeat algorithm presented in Chapter 8. This relies on a novel ranging protocol with fixed
transceivers at unknown locations, where despite global unobservability of the system, the
local observability ensures that the robot can retrace a taught trajectory to within sub-metre
accuracy.

All the developed algorithms are implemented on real hardware and evaluated on exper-
imental data. Details on the different hardware used and the evolution of the experimental
setup over the course of this thesis is presented in Appendix A.



Chapter 2

Preliminaries

Summary

Before delving into the complexities of UWB-based state estimation, this chapter will present
some of the more general mathematical preliminaries necessary for understanding the sub-
sequent algorithms, protocols, and derivations. Specific preliminaries required for a specific
topic in a future chapter will then be discussed within the chapter. Therefore, the expert
reader familiar with basic probability and filtering theory, matrix Lie groups, and UWB may
safely skip this chapter.

2.1 Probability Theory

Real-life sensor data is noisy. Utilizing noisy sensor data for tasks such as navigation requires
properly characterizing the noise using probabilistic tools. Given that any estimate of the
state of a robot is typically conditioned on measurements from noisy sensors, there is always
uncertainty in the state estimate. Probabilistic tools are a perfect fit for understanding the
level of confidence one can associate with a state estimate.

2.1.1 Gaussian Distributions

The Gaussian distribution is perhaps the most famous and commonly used distribution.
The use, and therefore commonality, is justified by the Central Limit Theorem [42, Theo-
rem 5.5.14]. The Gaussian distribution is further preferred as its properties allow for concise
mathematical derivations and efficient computational algorithms.

An n-dimensional random variable x has a Gaussian distribution with mean µ ∈ Rn and
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Figure 2.1: An example of the joint distribution p(x, y) of two scalar Gaussian random variables x and y.

covariance Σ ∈ Rn×n if its multivariate probability density has the form

p(x) = N (µ,Σ) =
1√

(2π)n det Σ
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
. (2.1)

Consider now an n-dimensional random variable x and an m-dimensional random vector
y. If these random variables have the joint Gaussian probability distribution

p(x, y) = N
([

µx

µy

]
,

[
Σxx Σxy

Σyx Σyy

])
, (2.2)

then the marginal and conditional distributions of x and y are given as [43, Lemma A.2]

p(x) = N (µx,Σxx), (2.3)

p(y) = N (µy,Σyy), (2.4)

p(x|y) = N (µx + ΣxyΣ
−1
yy (y− µy),Σxx −ΣxyΣ

−1
yy Σyx), (2.5)

p(y|x) = N (µy + ΣyxΣ
−1
xx (x− µx),Σyy −ΣyxΣ

−1
xxΣxy). (2.6)

An example of a joint distribution and the corresponding marginal distributions is shown in
Figure 2.1.
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2.1.2 The Sigma Point Transform

generate sigma points

pass sigma points

through function

fit distribution to

new points

Figure 2.2: A visualization of how the sigma point transformation can be used to compute the posterior
distribution (in green) from the prior distribution (in red).

Oftentimes a need arises to pass a random variable through a function. The sigma point
transform is a method used to approximate the nonlinear transformation of a distribution.
By generating a set of sigma points from the a priori distribution and passing them through
the nonlinear function, the newly generated points are used to approximate the nonlinearly
transformed distribution [43, Section 5.5].

Consider a nonlinear function z = h (x, y), where x ∼ N (µx,Σx) is a p-dimensional
random variable and y ∼ N

(
µy,Σy

)
a q-dimensional one, and x and y are assumed to

be mutually uncorrelated random variables. To find the distribution of z using a sigma
point transformation, the random variables are augmented into one vector v ∼ N (µv,Σv)

of dimension p+ q, where

µv =

[
µx

µy

]
, Σv =

[
Σx 0
0 Σy

]
. (2.7)
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The next step involves generating the sigma points from (2.7), which can be done using
different approaches. The spherical cubature rule [43, Section 6.5] will be used throughout
this thesis. Define L , dim (µv) and the Cholesky decomposition LLT , Σv, where L is a
lower-triangular matrix. The spherical cubature rule results in a total number of L sigma
point pairs, where the ith pair is defined as

si , µv +
√
L coli(L), si+L , µv −

√
L coli(L),

and coli(L) is the ith column of the matrix L. By unstacking the ith sigma point into the
two components xi and yi, the ith transformed point is zi = h (xi, yi). The new transformed
distribution can then be approximated using the 2L transformed points through

µz =
1

2L

2L∑

i=1

zi, Σz =
1

2L

2L∑

i=1

(zi − µz) (zi − µz)T . (2.8)

This process is illustrated in Figure 2.2.

2.2 Ultra-wideband Ranging

UWB ranging between two transceivers relies on ToF measurements, which are deduced from
timestamps recorded by a clock on each transceiver. However, these clocks are unsychronized.
Denoting ti(t) as the time t resolved in Transceiver i’s clock gives

ti(t) = t+ τi(t), (2.9)

where τi(t) defines the time-varying offset of clock i. The evolution of the offset τi(t) of clock
i can be modelled using a third-order ordinary differential equation (ODE) [44]. However,
[22] shows that a second-order ODE of the form

[
τ̇i

γ̇i

]
=

[
0 1

0 0

][
τi

γc

]
+ wi (2.10)

is sufficient for localization purposes, where γi(t) is called the clock skew, wi is a continuous-
time zero-mean white Gaussian process noise with E[wi(t1)wi(t2)] = Qδ(t1 − t2),

Q =

[
Qτ

Qγ

]
,
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Trans. i

T
1

Active Info

T
2

T
3

T
4

Trans. j

T
im

e

Figure 2.3: The SS-TWR protocol.

δ(·) is the Dirac’s delta function, and Qτ and Qγ are the clock offset and skew process-
noise power spectral densities (PSDs), respectively, which can be tuned based on the user’s
knowledge of the quality of the clocks. Additionally, note that the time-dependence has been
omitted from the notation in (2.10) for conciseness.

To obtain a range measurement, the ToF between two transceivers must be measured.
Consider the first message in Figure 2.3. Transceiver i transmits a message at time instance
T1 that is received by Transceiver j at time instance T2, and the true ToF is then tf = T2−T1.
In the absence of other sources of sensor noise and in the absence of any clock offsets (i.e.,
τi = τj = 0), the ToF tf can be found simply by subtracting the timestamps recorded by the
clocks.

However, the clocks are not synchronized in practice, and the time instances T1 and T2

as timestamped by Transceiver i’s and Transceiver j’s clocks are

T1
i = T1 + τi, (2.11)

T2
j = T2 + τj, (2.12)

respectively, under a constant clock-offset model. This means that taking the difference
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yields a biased range measurement, since

T2
j − T1

i = T2 + τj − T1 − τi (2.13)

= tf + τj − τi. (2.14)

The bias here can be significant, as 1 ns in synchronization error translates to c [m/s] ×
10−9 [s] ≈ 30 [cm] in localization error, where c is the speed of light.

The most standard solution to this problem is to perform single-sided two-way ranging
(SS-TWR), where, as shown in Figure 2.3, Transceiver j responds with another message.
Under an assumption that the transceivers have not moved relative to one another, tf =

T4 − T3 = T2 − T1. Also, under the constant-offset assumption, the time instances T3 and T4

are timestamped as

T3
j = T3 + τj, (2.15)

T4
i = T4 + τi, (2.16)

respectively. Taking the average of the two ToF measurements such that

1

2
((T4

j − T3
i ) + (T2

j − T1
i )) =

1

2
((T4 + τi − T3 − τj) + (T2 + τj − T1 − τi)) (2.17)

= tf (2.18)

causes the offsets to cancel out, thus outputting an unbiased ToF measurement.
Note that the last message shown in red represents an “information message” used to

share the timestamps recorded by Transceiver i such that the robot with Transceiver j can
also output a range measurement. Additionally, note that the above derivation follows from
a constant offset assumption, which is in itself another source of error in the above model as
will be further discussed in Chapter 4.

2.3 Matrix Lie Groups

Rather than using the conventional vector-space representation, this thesis uses matrix Lie
groups to represent the state of the robot. This approach is taken because the state of a robot
is often constrained to a manifold, and matrix Lie groups are a natural way to represent such
a constrained state. For example, representing attitude using Euler angles is problematic
due to the non-unique nature of such representation of attitude, as well as singularities in the
attitude kinematics. Matrix Lie groups provide a more natural representation of attitude.
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Figure 2.4: The distribution of the posterior position of the green robot given a position prior and a single
range measurement with the red robot.

Further motivating the use of matrix Lie groups is the ability to compactly and more ac-
curately represent the state of a robot and its uncertainty. For example, consider the problem
of estimating the position of a robot given a prior position and a single range measurement
to a landmark or another robot. The posterior distribution of the position of the robot’s cen-
tre is shown in Figure 2.4. Under a Gaussian assumption, this banana-shaped distribution
cannot be accurately represented using traditional vector-space-based state representations,
as this would require fitting an ellipsoid to the banana-shaped distribution. However, using
matrix Lie groups, the banana-shaped distribution can be accurately represented using a
Gaussian distribution, leading to better-performing state estimators.

This thesis only considers matrix Lie groups, which is a subset of the more general Lie
groups. A Lie group is a group that is also a smooth manifold, where a group is a set
with a binary operation that satisfies what is referred to as the the group axioms, which is
beyond the scope of this thesis. The interested reader can refer to [45]. Matrix Lie groups,
as compared to the more general Lie groups, have the additional property that the elements
of the group can be represented as square, invertible matrices, and that the group operation
is matrix multiplication.

2.3.1 Definitions and Useful Identities

The relevant mathematical foundations for manipulating matrix Lie groups will be addressed
next. Consider two elements X,Y ∈ G of a matrix Lie group G, where G ⊂ Rn×n. Any
matrix Lie group is closed under matrix multiplication, meaning that XY ∈ G. Additionally,
X−1 ∈ G, and the identity element of the group is just the matrix identity 1 of dimension n.
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ξ ∈ R
m

Ξ ∈ g X ∈ G

Log(T)

Ξ
∨ log(T)

ξ∧

Exp(ξ)

exp(Ξ)

Figure 2.5: A summary of the operators between elements of the different spaces associated with matrix Lie
groups.

Associated with every matrix Lie group is a matrix Lie algebra g, whose elements consist
of matrices that also belong to Rn×n. The matrix Lie algebra is formally defined as the
tangent space of the matrix Lie group at the identity element. Elements of the matrix Lie
algebra Ξ ∈ g can also be represented as elements of Rm by defining a linear mapping
(·)∧ : Rm → g such that

Ξ = ξ∧, ξ ∈ Rm.

Similarly, the inverse of (·)∧, denoted (·)∨ : g→ Rm, is defined such that ξ = Ξ∨.
Mapping elements of the matrix Lie algebra g to the matrix Lie group G is the exponential

map exp : g→ G, thus yielding the definition

X = exp(ξ∧) , Exp(ξ),

where Exp : Rm → G is defined for conciseness. The inverse of the exponential map is the
logarithmic map log : G→ g, yielding the definition

ξ = log(X)∨ , Log(X),

where Log : G → Rm is also defined for conciseness. Owing to the fact that G is a matrix
Lie group, the exponential map and logarithmic map are the same as the matrix exponential
and matrix logarithm, respectively. A summary of these operators is shown in Figure 2.5.

Another useful identity of matrix Lie groups comes from the Adjoint matrix Ad, defined
as

Ad(X)ξ , (Xξ∧X−1)∨, (2.19)
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which can be similarly written as

Exp(Ad(X)ξ) , X Exp(ξ)X−1.

Lastly, another identity that will be useful for the derivations in this thesis is the odot
operator (·)� : Rn → Rn×m, defined such that

p�ξ , ξ∧p (2.20)

for any vector p ∈ Rn.

2.3.2 Perturbing Matrix Lie Group Elements

The non-commutativity of matrix multiplication means that matrix Lie group elements can
be perturbed in two ways, from the left

X = Exp(δξ)X̄

or the right
X = X̄ Exp(δξ),

where the overbar denotes a nominal value. Typically, when dealing with random elements
of a group, X̄ is assumed to be the mean, and the perturbation from the nominal value is
modelled by assuming that the quantity δξ ∼ N (0,Σ) is a zero-mean Gaussian random
variable with covariance Σ. Additionally, the first-order approximation

Exp(δξ) ≈ 1 + δξ∧ (2.21)

will often be used when linearizing nonlinear models.

2.3.3 Common Matrix Lie Groups Used in Robotics

Having formalized the basic mathematical foundations of matrix Lie groups, this section will
now present some of the more common matrix Lie groups used in robotics, particularly when
states are an element of three-dimensional space (3D). This section only provides the formal
definition of each group; the exact expression of the operators on the different groups can be
found in [46, Chapters 2.2-2.4].
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Special Orthogonal Group SO(3)

Attitude is typically parametrized using a rotation matrix or a direction cosine matrix (DCM)
C, which is an element of the special orthogonal group SO(3). The group is formally defined
as

SO(3) =
{

C ∈ R3×3 | CTC = 1, det C = +1
}
. (2.22)

Special Euclidean Group SE(3)

Another common matrix Lie group is the special Euclidean group SE(3), which is the group
of rigid-body transformations in 3D. The pose of one rigid body relative to another is defined
using the relative attitude and position (C, r). The group is formally defined as

SE(3) =

{
T ∈ R4×4 | T =

[
C r
0 1

]
, C ∈ SO(3), r ∈ R3

}
. (2.23)

Extended Special Euclidean Group SE2(3)

Lastly, extending SE(3) to include velocity is the extended special Euclidean group SE2(3).
The extended pose of one rigid body relative to another is defined using the relative attitude,
velocity, and position (C, v, r). The extended pose can be represented using an extended
pose transformation matrix [47], and the group is formally defined as

SE2(3) =

{
T ∈ R5×5 | T =




C v r
0 1 0

0 0 1


 , C ∈ SO(3), v, r ∈ R3

}
. (2.24)

2.4 Kalman Filtering

Consider a discrete-time linear system given by

xk = Ak−1xk−1 + Bk−1uk−1 + wk−1, wk−1 ∼ N (0,Qk−1) , (2.25)

yk = Ckxk + νk, νk ∼ N (0,Rk) , (2.26)

where x is some state that is to be estimated, u is some interoceptive measurement, y is an
exteroceptive measurement, and the subscript denotes the time-step. Additionally, assume
that there is some known prior estimate, x0 ∼ N

(
x̌0, P̌0

)
. The minimum mean square error

(MMSE) estimator of xk given past measurements is given by the Kalman filter (KF) [25],
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where the prediction or propagation step is given by

x̌k = Ak−1x̂k−1 + Bk−1uk−1, (2.27)

P̌k = Ak−1P̂k−1AT
k−1 + Qk−1, (2.28)

and the correction or update step is given by

Sk =
(
CkP̌kCT

k + Rk

)
, (2.29)

Kk = P̌kCT
kS−1

k , (2.30)

zk = (yk − Ckx̌k) , (2.31)

x̂k = x̌k + Kkzk, (2.32)

P̂k = (1−KkCk) P̌k. (2.33)

The prediction step typically comes from a motion model that is a function of interoceptive
measurements, and the correction step typically comes from a measurement or observation
model that is a function of exteroceptive measurements. Note that zk is typically referred
to as the innovation, Sk as the innovation covariance, and Kk as the Kalman gain.

In order to use the KF with nonlinear models, the nonlinear models are linearized by per-
turbing the states to give the extended Kalman filter (EKF). Additionally, when estimating
states that are elements of matrix Lie groups, the update given in (2.32) is replaced with a
multiplicative update, yielding an on-manifold EKF [48]. Although this thesis uses the KF
and its variants in their standard form, it is worth noting that there exists a large body of
literature on numerical methods for implementing the KF and its variants [49, Chapters 7
and 9].

2.4.1 Consistency

The most obvious way to evaluate state estimators is to compare the estimated state with
the true state. However, equally important is the ability to evaluate how well the state
estimator characterizes the uncertainty in the state estimate. An overconfident estimator
will underestimate its uncertainty, which can be catastrophic in safety-critical applications.
On the other hand, an underconfident estimator will overestimate its uncertainty, which can
lead to suboptimal performance. An example of this is shown in Figure 2.6.

The term consistency of a filter is typically used to evaluate how well a filter estimates
its own level of confidence. When considering filters that assume that the state distribution
is a Gaussian, a filter’s estimated mean x̂k ∈ Rn and corresponding estimated uncertainty
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Consistent estimator

Overconfident estimator

Underconfident estimator

True position Estimated position UncertaintyEstimated position UncertaintyTrue position Estimated position UncertaintyEstimated position Uncertainty

Crash!

Stuck!

Figure 2.6: A visualization of the difference between an overconfident estimator and an underconfident
estimator using a ground vehicle trying to use its state estimate to assess if it is safe to pass an obstacle.
A consistent estimator will allow the robot to pass the obstacle without colliding, while an overconfident
estimator might result in a crash with the obstacle. Meanwhile, an underconfident estimator is typically too
conservative and will result in the robot either not passing the obstacle or taking a suboptimal path where
it needs to deviate too much from its original trajectory.
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P̂k ∈ Rn×n represent the filter’s knowledge of a true state xk ∈ Rn at time-step k. In [50], a
filter is formally defined as consistent if the following conditions are satisfied,

E[xk − x̂k] = 0, (2.34)

E
[
(xk − x̂k)(xk − x̂k)T

]
= P̂k. (2.35)

The former is an unbiasedness requirement, and the latter is a covariance-matching require-
ment. A more lenient definition of consistency is presented in [36], where a filter is defined
as consistent if it satisfies the condition

P̂k − E
[
(xk − x̂k)(xk − x̂k)T

]
� 0, (2.36)

meaning that a filter is said to be consistent as long as the filter is not overconfident.
Having defined consistency, a consistency metric is now required. The normalized estima-

tion error squared (NEES) metric is a scalar metric that is used to evaluate the consistency
of a filter, and is defined as

εk = (xk − x̂k)TP̂−1
k (xk − x̂k). (2.37)

If the filter is indeed consistent, then εk ∼ χ2
n, where χ2

n is the chi-squared distribution with
n degrees of freedom. The NEES test can be thought of as a state-estimation application of
the chi-squared test [51].

If N Monte Carlo trials are executed, the N -run average NEES can be defined as

ε̄k =
1

N

N∑

i=1

ε
(i)
k , (2.38)

where ε(i)k is the NEES of the ith Monte Carlo trial. If the filter is indeed consistent, then
Nε̄k ∼ Nχ2

n. More details regarding the evaluation of the consistency of a filter can be found
in [50, Ch. 5.4].

2.4.2 Statistical Outlier Rejection

The NEES test requires knowledge of the ground truth; therefore, it cannot be used in
real-time when a filter is running on-board a robot. Another statistical test, the normalized
innovation squared (NIS) test, relies on the fact that the innovation zk ∈ Rm at time-step
k, as defined by (2.31), should satisfy the estimate covariance Sk ∈ Rm×m, as computed in
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(2.29). Similar to the NEES metric εk, the NIS metric is defined

κk = zTkS−1
k zk, (2.39)

and if the measurement is not an outlier, then κk ∼ χ2
m. The NIS test can be thought of as

an outlier-rejection application of the chi-squared test that can be implemented in real-time
as it only relies on quantities computed by the filter and the available measurements. Again,
for more information regarding the NIS test, see [50, Ch. 5.4].

2.5 Kinematics

This thesis utilizes 3D motion extensively to model the motion of quadcopters in both simula-
tion and real-world experiments. This section presents the motion model of the quadcopters
in 3 dimensions as a function of the measurements of the IMU to be used in a filtering frame-
work alongside the range measurements. The motion model presented here is shown from
the perspective of one robot as resolved in some arbitrary fixed reference frame a, denoted
Fa, often referred to as the “absolute” or “global” frame. This will be used in the remain-
ing chapters to derive the relative-motion model between quadcopters, and to formulate a
“robocentric” viewpoint, where states are resolved in a robot’s body-fixed frame, denoted
Fb. Furthermore, the motion model will be reformulated directly on the SE2(3) manifold in
Chapter 6.

2.5.1 IMU Motion Model in 3D

The standard IMU motion model in 3D is as follows [8, Chapter 11]. The attitude of a robot
is parametrized using a DCM Cab. The attitude process model is given as

Ċab = Cab

(
ωbab
)×
, (2.40)

where time-dependence is omitted from the notation for conciseness, ωbab is the angular
velocity of Fb relative to Fa as resolved in Fb, and (·)× is the skew-symmetric cross operator,
which is in fact the (·)∧ : R3 → so(3) operator on SO(3).

Meanwhile, the robot’s velocity process model is given as

a v̇−→
zw/a = a−→

zw/a, (2.41)

where v−→
zw/a is the velocity of the robot at point z relative to some arbitrary point w with
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respect to Fa, and a v̇−→
zw/a is its derivative with respect to Fa. Similarly, the robot’s position

process model is given as
a ṙ−→

zw = v−→
zw/a. (2.42)

The interoceptive or proprioceptive sensor used is an IMU, which consists of a 3-axis gy-
roscope and a 3-axis accelerometer. Assuming no bias and measurement noise, the gyroscope
measures ωbab directly, while the accelerometer measures the specific acceleration

α−→ , a−→
zw/a − g−→ (2.43)

in the body frame, where g−→ is the gravitational acceleration vector. Substituting (2.43)
back in (2.41) and resolving the state and the gravitational acceleration vector in Fa and
the accelerometer measurement in Fb gives

av̇zw/aa = Cabαb + ga, (2.44)

where xi is the vector x−→ resolved in Fi. Similarly,

aṙzwa = vzw/aa . (2.45)

2.5.2 Transport Theorem

In order to derive the robocentric relative motion model, the transport theorem will be
needed. The transport theorem is a generalization of the chain rule that relates the deriva-
tives of a physical vector with respect to two different reference frames [52, Chapter 2.10].
The transport theorem for a vector r−→ and two reference frames Fa and Fb is formally given
as

a ṙ−→ = b ṙ−→+ ω−→
ba × r−→, (2.46)

where ω−→
ba is the angular velocity of Fb relative to Fa.



Chapter 3

Relative Position Estimation in
Multi-Agent Systems Using
Attitude-Coupled Range Measurements

Summary

The task of three-dimensional relative position estimation using range measurements in
multi-agent systems suffers from unobservabilities. The contributions of this chapter in-
clude the derivation of a sufficient condition for the observability of the relative positions,
and satisfying the condition using a simple framework with only range measurements, an
accelerometer, a rate gyro, and a magnetometer on each robot. The framework is tested
in simulation and in experiments, where 40-50 cm positioning accuracy is achieved using
inexpensive off-the-shelf hardware.

3.1 Introduction

Estimating three-dimensional relative positions between robots in a global frame using range
measurements is a non-trivial task, as there is an infinite number of possible solutions given a
single range measurement. This unobservability arises from the fact that any group of agents
can be collectively rotated in three-dimensional space while maintaining constant inter-agent
distances, as no bearing information is available. There exist a multitude of approaches that
attempt to fuse the range measurements with additional information to achieve an observable
problem.

Most indoor localization approaches traditionally assume the existence of an infrastruc-

22
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Figure 3.1: A schematic of the two-tag agent framework, where the red agents possess two ranging tags, and
are referred to as two-tag agents, and the blue agent is a single-tag agent.

ture of 4 or more anchors with known positions [14], [17], [22]. However, the problem of
relative localization has also been addressed in the presence of a single anchor. In [53], only
a single anchor is used for position tracking, with a constant velocity assumption, while a
range-based SLAM approach is utilized for relative localization in [16] and [54]. Other ap-
proaches that eliminate the need for anchors in two-dimensional relative position estimation
include [55] and [56], which assume that displacement measurements are available using an
optical flow sensor. In [18], a sliding window filter is able to estimate the three-dimensional
relative position between two agents using just single-range measurements and 9-axis inertial
measurement units (IMUs), where a 9-axis IMU is an IMU with a 3-axis magnetometer along-
side the gyroscope and accelerometer. All these single-range-based localization approaches
usually require persistent relative motion between the anchor and the agent [16], [53], [54] or
the two agents [18], [55], [56], as outlined in [57]. In the presence of many agents, [58] and
[59] show how the nonlinear observability matrix associated with a two-dimensional relative
localization problem is dependent on both the rigidity matrix and the relative motion of the
agents. Alternative approaches include the implementation of a particle filter when only an
IMU and range measurements are available, as in [60], which is computationally expensive.

More recently, the idea of using multi-tag agents, as shown in Figure 3.1, has been
proposed. In [61], UWB range sensors are used for relative positioning of trucks fitted with
two tags, and in [62], an agent is equipped with three tags. Both these methods extract
two-dimensional relative position information in the body frame of the computing agent. In
[19], the users are capable of tracking a person in two dimensions using a special ranging
protocol with 4 tags on an agent, while in [20], multiple tags on a moving platform allow
an agent to approach using range and relative displacement measurements, and land using
vision and range measurements. Lastly, in [63], the use of two two-tag agents is coupled
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with an altimeter and optical flow velocity measurements for relative localization, and the
results are validated in an experiment with limited motion. The main limitation of the
results in [19], [20], [61]–[63] is that the analysis is mainly restricted to only two agents, and
no observability analysis is considered.

The contributions of this chapter are threefold. The first contribution is a rigidity-
theory-based observability analysis for any number of agents, where a sufficient condition
that is independent of the relative motion of the agents is derived for the observability of
the three-dimensional relative positions when only range measurements are available. This
motivates the second contribution, which is an extension of the two-tag framework to multi-
agent systems that allows the estimation of three-dimensional relative positions using just the
range measurements and a low-cost 9-axis IMU per agent, for any number of agents, provided
at least two two-tag agents are present. This framework is shown to be instantaneously
locally observable, as per the sufficient condition, which means that the system is locally
observable at any given point in time without any specific trajectory requirements. Lastly,
the performance of this framework in simulations and in experiments using multiple agents
equipped with inexpensive sensors is presented.

The remainder of this chapter is organized as follows. Graph theoretic and observability
concepts are reviewed in Section 3.2. A sufficient condition for observability of a three-
dimensional relative localization problem is addressed in Section 3.3. The two-tag framework
is discussed in Section 3.4 and is validated in simulation and experimentally in Sections 3.5
and 3.6, respectively.

3.2 Rigidity Theory and Instantaneous Local Observabil-

ity

This chapter uses graph theory as one of the fundamental tools for observability analysis.
Consider an undirected graph G = (V , E) consisting of a set of n vertices and m edges, rep-
resenting the n tags and m distance measurements, respectively. As such, let rfif0a ∈ R3

represent the unknown location of Tag fi relative to Tag f0, resolved in the 3-dimensional
reference frame Fa. Additionally, let yfifj(rfif0a , rfjf0a ) ∈ R, (i, j) ∈ E be the range measure-
ment between Tags fi and fj, where (fi, fi) /∈ E , ∀fi ∈ V . All graphs defined in this chapter
are assumed to have this property. Define a column matrix

x ,
[(

rf1f0a

)T · · ·
(
rfn−1f0
a

)T]T ∈ R3(n−1) (3.1)
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a
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1

a
−→

2

w

Figure 3.2: An example of a rigid graph. However, when edges d2 and d3 are removed, the graph becomes
flexible, as edge d1 can rotate about its upper vertex without breaking any constraints. Additionally, both
the rigid and the flexible graphs can translate and rotate without breaking any constraints.

of the n− 1 relative positions relative to Tag f0, and a column matrix y(x) ∈ Rm of all the
known measurements yfifj .

Parametrize the vector space spanned by the system state by a new arbitrary variable
t. To analyze the behaviour of the measurements y(x(t)) for any infinitesimal change in the
states x(t) with respect to t, the derivative

dy(x(t))

dt
=
∂y(x(t))

∂x
dx(t)

dt
, Rẋ(t) (3.2)

is computed, where R ∈ Rm×3(n−1) is the rigidity matrix.
Traditionally, rigidity theory in R3 is concerned with the notion of infinitesimal rigidity

by achieving rank R = 3n− 6 for n absolute position states, where the 6 degrees of freedom
are associated with the translations and rotations of the graph as a whole [64], as shown in
Figure 3.2. Similarly, when dealing with n− 1 three-dimensional relative states as in (3.2),
infinitesimal rigidity is achieved when rank R = 3(n− 1)− 3 = 3n− 6, where the 3 degrees
of freedom are associated with the rotations of the graph as a whole.

Therefore, when addressing relative position states, the only non-trivial solutions to Rẋ =

0 of an infinitesimally rigid graph are of the form

d
dt

rfif0a = ω×rfif0a = −
(
rfif0a

)×
ω, ∀fi ∈ V\{f0}, (3.3)

where ω denotes a common overall angular velocity of the graph and (·)× denotes the skew-
symmetric cross product matrix operator in R3 as defined in Section 2.5. Without loss of
generality, the linearly independent canonical basis vectors ei of R3 are chosen as a basis
for ω. Therefore, from (3.3), the null space of the rigidity matrix of an infinitesimally rigid
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graph is
null (R) = span {v1, v2, v3} , (3.4)

where

vi ,




−
(
rf1f0a

)× ei
...

−
(
rfn−1f0
a

)× ei


 ∈ R3(n−1). (3.5)

Note that the invariance of the measurements due to common translational motion is a trivial
solution when dealing with relative states, since the relative position states are also invariant
to common translational motion, meaning ẋ = 0.

A more stringent condition as compared to infinitesimal rigidity is instantaneous local
observability, which requires that there is no local trajectory of the states x at any instant in
time, excluding the trivial trajectory ẋ = 0, that results in no change in the measurements
[65, Section 6.1]. Consequently, as per (3.2), a system of n agents consisting of n−1 relative
position states is instantaneously locally observable if R is full rank, that is if rank R =

3(n− 1).
The aim of this section is to disambiguate the aforementioned 3 degrees of freedom

corresponding to rotations of the graph as a whole, thus achieving instantaneous local ob-
servability for the relative localization problem. In the remainder of this chapter, the term
local observability is used to refer to instantaneous local observability for conciseness.

3.3 Sufficient Condition for Local Observability

Consider a group of n > 3 ranging tags navigating 3-dimensional space. The n− 1 relative
position vectors rfif0a , fi ∈ {f1, . . . , fn−1}, are considered. Tag f0 takes the role of the
arbitrary reference point, and is referred to as the reference tag. The position between any
two tags can be computed using these n − 1 position vectors relative to the reference tag.
Additionally, there is no loss of generality in assuming Tag f0 as the reference tag, since in
practice any tag can be set as the reference tag.

Let G = (V , E) be an infinitesimally rigid undirected graph representing the interconnec-
tion topology of the sensor network consisting of the n tags, where the edges represent the
distance measurements between pairs of tags. As is, the range measurements are invariant
to translations and rotations of the group of tags as a whole, as shown in Figure 3.2, while
the relative position states are invariant to the translations only.

Theorem 1 Consider an infinitesimally rigid undirected graph G(V , E) and its rigidity ma-
trix R, where the state vector consists of n− 1 relative position vectors rfif0a , ∀fi ∈ V\{f0},
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and the edges represent range measurements. The graph G̃(V , Ẽ) constructed from G with two
extra edges representing the direct measurement of two linearly independent relative position
vectors rfjf0a , rf`f0a ∈ R3\{0}, fj, f` ∈ V\{f0} corresponds to a locally observable system.

Proof: Given the infinitesimal rigidity assumption on G, the null space of the rigidity
matrix R is as defined in (3.4). Local observability as discussed in Section 3.2 requires that
Rẋ = 0 if and only if ẋ = 0. Therefore, new knowledge should modify R to generate a new
rigidity matrix R̃, such that

R̃ζ 6= 0, ∀ζ ∈ null R\{0}. (3.6)

Consider the system corresponding to the graph G̃, where two relative position vectors rfjf0a

and rf`f0a are measured. The rigidity matrix R̃ is then of the form

R̃ =
[

RT
1 RT

]T
, (3.7)

where R1 ∈ R6×3(n−1) is the permutation matrix that extracts the measured relative positions
rfjf0a , rf`f0a from x, and x is defined as per (3.1). That is,

[
rfjf0a

rf`f0a

]
= R1x. (3.8)

Given that Rζ = 0 by the definition of ζ, it is sufficient to show that R1ζ 6= 0 to achieve
(3.6). This can be rewritten as

R1

[
v1 v2 v3

]
a 6= 0, a =



a1

a2

a3


 6= 0, (3.9)

where ai represent arbitrary scalar parameters, since ζ is a linear combination of the vectors
vi as shown in (3.4). By replacing the matrix

R1

[
v1 v2 v3

]
=


 −

(
rfjf0a

)×

−
(
rf`f0a

)×


 (3.10)

into (3.9) and assuming that rfjf0a , rf`f0a 6= 0, the expression in (3.9) does not hold if and

only if
(

rfjf0a

)×
a = 0 and

(
rf`f0a

)× a = 0, which, due to a property of the cross product,

necessitates that the vectors rfjf0a , rf`f0a , and a be collinear. However, rfjf0a and rf`f0a are
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linearly independent and are non-zero by assumption. Therefore, the system represented by
the graph G̃ is locally observable.

When a system is locally observable, all the relative position vectors are locally unique
given the known measurements. Possible approaches to satisfying the minimum-knowledge
requirement specified by Theorem 1 in multi-agent localization is to fit a small subset of
the agents with a GPS or a stereo camera, in addition to the ranging tags. The GPS
extracts the relative position information by subtracting the absolute position information,
and stereo cameras can extract relative position information using attitude estimates and
depth perception. To satisfy the linear independence assumption, agents fitted with a GPS
must not lie in a straight line, and the relative position vectors between agents fitted with
stereo cameras and the agents they detect must not be all collinear. An alternative approach
that does not require additional new sensors is discussed in the next section.

3.4 Attitude-Coupled Range Measurements

3.4.1 Overview

The problem of three-dimensional multi-agent navigation using an IMU and range measure-
ments is now discussed. In the subsequent analysis in this section, an IMU is assumed to
consist of 3-axis accelerometers, gyroscopes, and magnetometers, which is commonly referred
to as a 9-axis IMU. Typically, the attitude of each agent is observable using the 9-axis IMU
data, as is the case when using an attitude and heading reference system (AHRS) to esti-
mate attitude [8], but the relative positions require further measurements, such as a GPS
as discussed in the end of Section 3.3. The standard way of utilizing range measurements
is usually invariant to each agent’s attitude, and thus having access to an agent’s attitude
provides no additional information regarding its instantaneous position.

This section discusses an approach to couple the range measurements with the attitude
estimates to satisfy the conditions of Theorem 1. This allows the integration of an IMU with
range measurements for attitude and relative position estimation of a team of robots. A key
component of this approach is the use of two-tag agents, which are agents equipped with
two non-collocated ranging tags. The notation fi and si will be used to denote the first and
second UWB tags of Agent i.

3.4.2 Two-Tag Agents

Rather than having one ranging tag on each agent, consider two two-tag agents as shown
in Figure 3.3, while the remaining agents are single-tag agents. A single-tag agent is a
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conventional agent with only one ranging tag. The range measurement between Tags f0 and
s1 tag is then

yf0s1 =
∥∥∥r10

a + Ca1rs11
1 − Ca0rf00

0

∥∥∥ , (3.11)

where Cai ∈ SO(3) is the direction cosine matrix (DCM) representing the rotation from the
body reference frame Fi to the absolute frame Fa, r10

a represents the position of Agent 1
relative to Agent 0 as resolved in the absolute frame, rs11

1 represents the known position of
Tag s1 of Agent 1 relative to the IMU of Agent 1, resolved in the Agent 1 body frame F1, and
similarly for rf00

0 . This shows the consequent coupling of the range measurements and the
attitude of the agents when considering two-tag agents. The subsequent corollary follows
from Theorem 1, where it is assumed that for the ith two-tag agent the relative position
vectors rfiii , r

sii
i ∈ R3\{0} are known, being the position of the two tags relative to the IMU

of Agent i, as resolved in the body frame Fi. This also means that rsifii = rsiii −rfiii is known.

Corollary 1 Consider a team of nt ≥ 2 two-tag agents, each with known attitude, and ns
single-tag agents. Assume that the undirected graph composed of the 2nt + ns vertices and
the range measurements between the tags is infinitesimally rigid. Given that there are at
least two two-tag agents j and ` where rsjfja and rs`f`a are linearly independent, the underlying
system representing the relative localization problem is locally observable.

Proof: When the attitude of any two-tag agent i is known, the vector rsifia resembling
the relative position vector between the two tags of agent i in the absolute frame Fa is found
through

rsifia = Cairsifii . (3.12)

Consequently, since at least two linearly independent relative position vectors are known in
Fa, the conditions of Theorem 1 are satisfied. Hence, the system is locally observable.

Remark 1 Whenever a team of agents equipped with IMUs includes at least two two-tag
agents, the problem of finding the relative position of the agents becomes observable using
just range measurements within the team. However, this also assumes that the known rel-
ative position vectors are linearly independent. Therefore, if the two two-tag agents orient
themselves such that the known relative position vectors are parallel, the system becomes un-
observable. A user must therefore place the tags in a strategic way to minimize the possibility
of these occurrences based on the application. For example, quadcopters rarely go from level
flight to a 90◦ pitch or roll orientation, and by placing the two-tags vertically on one agent
and horizontally on the other, it is unlikely that the system becomes unobservable. This is-
sue is also mitigated when using more than two two-tag agents, or by fitting more than two
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Agent 0

s0f0

F0

Faw

Agent 1

s1

f1

F1

UWB Tag

IMU

Figure 3.3: Two two-tag agents, with each agent having two ranging tags at f0, s0 and f1, s1, respectively,
and an IMU at their center. The absolute frame is Fa, and the body frame of the ith agent is Fi.

tags on an agent, which however adds hardware and congestion on the UWB communication
space.

Note that the rigidity matrix only addresses whether or not ambiguities arise due to the
graph being continuously deformable. Two types of ambiguities not considered by the notion
of local observability are discontinuous flex ambiguities and flip ambiguities, as discussed
in [66], [67]. For the two-tag agents framework, the user must be aware of the possible
occurrence of such ambiguities in the presence of attitude uncertainty, as shown in Figs. 3.4
and 3.5.

3.4.3 Relative Position and Attitude Estimator

Corollary 1 requires the presence of at least two two-tag agents to achieve local observability.
Therefore, any single-tag agent needs to communicate with at least two two-tag agents, and
any two-tag agent needs to communicate with at least one other two-tag agent. Addition-
ally, each two-tag agent i must compute r̂sifia based on its attitude estimate Ĉai and the
known vector rsifii . Therefore, by satisfying these minimum ranging conditions, and with
IMU measurements on two-tag agents for attitude estimation, any agent can estimate its
relative position in a framework similar to the one shown in Figure 3.6. The relative position
estimator can just be a simple nonlinear least squares algorithm, or a more complex filtering
algorithm. In what follows, a centralized framework is considered to demonstrate the use of
nt ≥ 2 two-tag agents and ns single-tag agents for relative positioning, and decentralization
is reserved for future work.
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Agent 1

Agent 0

Agent 1

s0f0

f1
s1

s1

f1

Figure 3.4: A flex ambiguity with two
two-tag agents in R2. The flex ambi-
guity does not exist if the dashed edge
exists, which might otherwise be as-
sumed redundant in R2.
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s0
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f1
s1

f1
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Agent 1

Agent 0

s0f0

Agent 1 s1

f1

f1

s1Agent 1

Figure 3.5: A flip ambiguity with two two-tag agents in R2. The
more parallel the two agents are, the more likely that attitude
uncertainty results in a flip ambiguity, since the attitude error
resulting from the flip ambiguity is smaller.
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Minimal central processor for relative position estimation of Agent 1

Minimal central processor for relative position estimation of Agent 2

Figure 3.6: A schematic representing the minimum information required for relative position estimation of
two-tag Agent 1 and single-tag Agent 2 relative to the two-tag reference agent Agent 0, in a centralized
framework. The tag locations are shown using the black markers, and the light grey lines in the background
represent all the range measurements between the ranging tags. The notation yi,j is used to denote all the
range measurements between Agents i and j. As per Corollary 1, the relative position vectors rs0f00 and
rs1f11 are assumed to be known. In the minimal central processors, note that the IMU of agents 0 and 1
are required as the relative localization problem is dependent on estimating their attitude, while the IMU
of Agent 2 is neglected as the attitude of Agent 2 is irrelevant. However, filtering approaches do require the
IMU of Agent 2 as well for prediction.
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The centralized relative position and attitude estimation problem for a team of N =

nt + ns agents considered herein involves estimating the state vector

x(t) =




r10
a (t)
...

rN−1,0
a (t)

v10/a
a (t)
...

vN−1,0/a
a (t)

φ1(t)
...

φN(t)




∈ R6(N−1)+3N , (3.13)

where vi0/aa ∈ R3 is the velocity of the IMU of Agent i relative to the IMU of the reference
agent Agent 0 with respect to Fa, resolved in Fa, and φi ∈ R3 is the rotation vector associated
with the DCM of Agent i. Note that this approach involves the estimation of the attitude
of the ns single-tag agents as well.

Let uacc
i ,ugyr

i ∈ R3 denote the accelerometer and gyroscope readings of Agent i, respec-
tively. Starting from Section 2.5, the process model of the relative states of Agent i is then
modelled as

aṙi0a (t) = vi0/aa (t), (3.14)
av̇i0/aa (t) = Cai(t) (uacc

i (t) + wacc
i (t)) (3.15)

− Ca0(t) (uacc
0 (t) + wacc

0 (t)) , (3.16)

where wacc
i ∈ R3 denotes the white Gaussian noise associated with the accelerometer mea-

surement of the ith agent. The process model of Agent i’s attitude is modelled as

Ċai(t) = Cai(t) (ugyr
i (t) + wgyr

i (t))× , (3.17)

where wgyr
i ∈ R3 denotes the white Gaussian noise associated with the gyroscope measure-

ment of the ith agent, and as before, the (·)× denotes the skew-symmetric cross product
matrix operator in R3.

To estimate the state vector (3.13) in a centralized framework, all agents communicate
their measurements to a master agent, which could be any of the N agents, along with noisy
range measurements between the ith tag of Agent k and the jth tag of Agent `, which for
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Table 3.1: Simulation parameters used in the Monte Carlo trials.

Specification Value
Accelerometer std. dev. (m/s2) 0.026
Gyroscope std. dev. (rad/s) 0.0025
Magnetometer std. dev. (µF) 0.85

UWB std. dev. (m) 0.1
IMU rate (Hz) 100
UWB rate (Hz) 20

No. of UWB freq. channels 3
Initial relative position std dev. (m) 0.45
Initial relative velocity std dev. (m/s) 0.45

Initial attitude std dev. (rad) 0.1

example for Tags f1 and s2 would be of the form

ys2f1 =
∥∥r21

a + rs22
a − rf11

a

∥∥+ νs2f1 , (3.18)

where νs2f1 ∈ R represents the white Gaussian noise associated with the range measurement
ys2f1 . In addition to the range measurements, accelerometer aiding [8] and magnetometer
measurements are implemented to correct attitude drift.

The process models (3.14)-(3.17) are discretized using a forward Euler discretization
scheme, and the process models and measurement models are linearized using a first-order
Taylor series approximation. A centralized multiplicative extended Kalman filter (MEKF)
in the spirit of [48] is then designed and evaluated in simulations in Section 3.5, and in
experiments in Section 3.6.

3.5 Simulation Results

Consider 6 fully-connected aerial robots equipped with an IMU and ultra-wideband (UWB)
ranging tags, where Agents 0, 1, and 2 are two-tag agents, and Agents 3, 4, and 5 are
single-tag agents. Let the 3 known relative tag positions be

rs0f00 =




0.3

0

0


 , rs1f11 =




0

0.3

0


 , rs2f22 =




0

0

0.3


 ,

where all values are given in metres. Additionally, let Agent 0 be the elected reference agent,
where a reference agent is specified similarly to a reference tag in Section 3.3. In this section,
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Monte Carlo RMSE Analysis
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Figure 3.7: A box plot for the RMSE on 100 Monte Carlo trials. Although there are 3 to 8 outliers in the
relative position estimates of the agents, the estimator still achieves an RMSE below 1 m accuracy for all
runs, below 0.35 m/s for the velocity estimates, and below 0.08 rad for the attitude estimates.

the developed framework is evaluated by fusing the range measurements with an IMU using
an MEKF to find the position of agents 1-5 relative to the reference agent as they move in
3-dimensional space. The centralized state estimator discussed in Section 3.4.3 is assumed
to be on Agent 0. The simulation parameters are given in Table 3.1.

To assess the performance of the MEKF with the two-tag framework, 100 Monte Carlo
trials with different initial conditions and noise realizations are performed, and the corre-
sponding root-mean-squared-error (RMSE) on the relative position, relative velocity, and
attitude states are shown in Figure 3.7. When considering all 100 runs, an average RMSE of
0.2887 m, 0.1080 m/s, and 1.306◦ for the position, velocity, and attitude states respectively
are achieved. The normalized estimation error squared (NEES) test from Section 2.4.1 is
performed as shown in Figure 3.8 to verify the consistency of the estimator.

3.6 Experimental Results

Experimental data is collected for a set-up with two two-tag agents and a single-tag agent,
where a fully-connected graph is assumed. The prototypes of a single-tag agent and a two-
tag agent are shown in Figure 3.9. The two two-tag agents are set to be Agents 0 and 1, and
Agent 0 is set to be the reference agent, with

rs0f00 =



−0.0067

0.3172

−0.0185


 , rs1f11 =




0.0043

0.3213

0.0224


 ,
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Figure 3.8: A plot representing the NEES test. The computed chi-squared statistic is below the upper
bound, indicating the estimator is consistent.

where all the values are in metres. The IMU data is collected at 240 Hz using a Raspberry
Pi Sense HAT device, and Pozyx UWB Developer Tags discussed in Appendix A.1.1 are
used for ranging. Only one frequency channel is used at a communication rate of 16 Hz;
therefore, each range measurement is collected at a frequency of only 2 Hz. Additionally,
ground truth position and attitude measurements are collected at 120 Hz using an OptiTrack
optical motion capture system.

The data is collected by moving all three hand-held agents indoors in random 3-dimensional
rotational and translational motion, in a volume of approximately 5 m × 5 m × 2 m. The
magnetometers are affected both by perturbations from the surroundings and the other
agents, making estimation, especially attitude estimation, more difficult. Despite that, and
with such a low ranging frequency and an inexpensive IMU, a relative position RMSE of
0.4890 m is achieved for Agent 1, and 0.42813 m for Agent 2, with the error and ±3σ

confidence bounds plotted in Figure 3.10. This asserts the potential of the two-tag frame-
work on indoor self-localization without the need for expensive hardware or computationally
expensive algorithms, such as visual odometry.

On flying quadcopters, vibrations affecting the IMU readings might result in worse rel-
ative position estimates. Additionally, a larger volume might degrade the performance of
the algorithm as the measurements to the two tags from another agent become less geomet-
rically distinct. However, by implementing more than just 3 agents and/or by increasing
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IMU (hidden)

UWB Tag

IMU
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Figure 3.9: The experimental set-up, showing a single-tag agent (left) and a two-tag agent (right).

the distance between the two tags of the two-tag agents, the performance of the estimator
improves and might compensate for worse attitude estimates or larger distance between the
agents.
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Figure 3.10: The performance of the relative position estimator on experimental data for both the two-tag
Agent 1 and the single-tag Agent 2, where the black lines represent the ±3σ bound of the estimator.

3.7 Conclusion and Future Work

In this chapter, the problem of three-dimensional relative position estimation using range
measurements is addressed. The first step involves deriving a sufficient condition such that
the relative position states of the agents are instantaneously locally observable. Thereafter,
a framework utilizing two-tag agents is developed, which exploits attitude information to
satisfy the sufficient conditions for observability. Lastly, this framework is integrated with
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an IMU using an MEKF and is tested in simulation and in experiments. The results show
that around 40-50 cm relative positioning accuracy is achievable, using just an inexpensive
IMU and range measurements between three agents.

Having addressed the problem of observability when estimating relative positions from
range measurements in the absence of anchors, a few other issues remain. These are sum-
marized as follows.

• Performance: The performance of the estimator can be improved by improving the
IMU odometry and reducing the error in the range measurements. Currently the EKF
fuses the IMU measurements, which drift significantly over a short period of time, and
the UWB measurements, which are noisy and incur environment-dependent biases.
Additionally, the ranging frequency is low, further degrading the performance of the
estimator.

• Magnetometer: The use of a magnetometer is necessary in this framework to correct
attitude drift. However, the magnetometer is affected by the surrounding environment
as the presence of metallic objects in the vicinity of the robot affects the magnetometer
readings. Therefore, the magnetometer readings are not reliable and at times degrade
the performance of the estimator.

• Scalability: Due to the use of UWB, the number of agents that can be used in this
framework is limited. This is because the UWB communication space is limited as
only one pair of tags can communicate at a time, and the more agents that are added,
the more congested the communication space becomes. This results in any pair of tags
communicating less often as the number of tags increases.

• Decentralization: This chapter assumes a centralized framework, where all range
measurements and all IMU measurements are available simultaneously to a central
processor at every time-step. However, typically in multi-agent systems, the agents are
not connected to a central processor, and the computers on-board the agents them-
selves are responsible for running the state-estimation algorithms. Assuming each
agent having access to all the agents’ sensor information is impractical due to commu-
nication constraints. To develop a practical and real-world implementable framework,
the communication constraints must be addressed.

• On-manifold: The state estimator developed in this chapter parametrizes the state
as an element of R3×R3×SO(3) rather than as an element of SE2(3), which does not
utilize the nice mathematical properties of on-manifold state representation discussed
in Section 2.3.
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• Discontinuous ambiguities: The presented rigidity-based observability analysis in
this chapter only addresses whether or not ambiguities arise due to the graph being
continuously deformable. Discontinuous ambiguities such as flex and flip ambiguities
as discussed in Section 3.4.2 are not considered. In an EKF-based framework, these
discontinuous ambiguities can lead to the convergence of the filter to the wrong state
if the estimated state approaches the mirrored realization.

The rest of this thesis will constantly refer to these problems as the focus is now on addressing
these problems to provide a practical UWB-based relative-pose estimation solution.



Chapter 4

Calibration and Uncertainty
Characterization for Ultra-Wideband
Two-Way-Ranging Measurements

Summary

This chapter addresses the problem of performance from Section 3.7 by improving the ac-
curacy and uncertainty characterization of the UWB range measurements to be utilized in
a filtering framework. Range measurements typically suffer from a systematic error or bias
that must be corrected to achieve high-accuracy localization. In this chapter, a ranging
protocol is proposed alongside a robust and scalable antenna-delay calibration procedure to
accurately and efficiently calibrate antenna delays for many UWB tags. Additionally, the
bias and uncertainty of the measurements are modelled as a function of the received-signal
power. The full calibration procedure is presented using experimental training data of 3
aerial robots fitted with 2 UWB tags each, and then evaluated on 2 test experiments. The
Pozyx UWB tags from the experiments in Chapter 3 are replaced with the custom UWB
boards discussed in Appendix A to allow the implementation of the proposed ranging pro-
tocol and extract the necessary information for the calibration procedure. A localization
problem is then formulated on the experimental test data, and the calibrated measurements
and their modelled uncertainty are fed into an extended Kalman filter (EKF). The proposed
calibration is shown to yield an average of 46% improvement in localization accuracy. Lastly,
this chapter is accompanied by an open-source UWB-calibration Python library, which can
be found at https://github.com/decargroup/uwb_calibration.
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4.1 Introduction

UWB-based ranging typically relies on measuring the ToF of radio signals from one tag to
another. This requires estimating the offset between the clocks on each tag. Furthermore,
the clocks often run at different rates due to physical imperfections in the individual clock’s
crystal oscillator, causing the offset to be time-varying. The rate of change of the clock
offset is referred to as the clock skew. In order to negate the effect of the clock offset during
ranging, different ranging protocols have been proposed, with the choice being dependent
on the specific application and availability of tags [68], [15, Section 7.1.4]. As discussed in
Section 2.2, a commonly used protocol is two-way ranging (TWR), which relies on averaging
out the measured ToF between two signals to negate the clock offset. This form of TWR is
referred to as single-sided TWR (SS-TWR), and is shown in Figure 4.1a.

Nonetheless, even after correcting for clock offsets, UWB range measurements typically
suffer from a systematic error or bias. A significant contributor to this error is the skew
between the clocks of the two ranging tags, as the different tags measure the passage of time
in different units [21], [30]. This additional bias can be corrected by estimating the clock
skew between the tags and embedding a skew-dependent correction factor when computing
the range measurement, as proposed in [30]. However, this necessitates estimating the clock
skew between all tags involved in ranging. Alternatively, [21] proposes a form of computing
the range measurement utilizing double-sided TWR (DS-TWR), which is shown to mitigate
clock-skew-dependent bias.

Another source of ranging bias stems from relative-pose-dependent antenna radiation
pattern [24], where pose refers to both position and attitude. The varying signal strength can
cause timestamping errors, and this effect is typically addressed using data-driven models.
In [69], a simple experiment with pre-localized fixed tags or anchors is used to determine
a relation between bias and the distance between ranging tags, while in [26], data-driven
models are trained using the distance between the tags and 7 features extracted from the
channel impulse response (CIR). In [40] and [70], a robot is flown around in a room with
UWB anchors to learn a model of the range bias as a function of the robot’s pose. The main
drawback of these methods is that the learned model is dependent on the relative poses
of the ranging tags, which are typically unknown in real-time without the bias-corrected
measurements in the first place. Additionally, the learned models are trained and tested
on the same anchor formations and are therefore not necessarily generalizable; calibration
must occur for every new anchor formation. In [30], the former issue is addressed by finding
a relation between the bias and the received first-path power (FPP) in line-of-sight (LOS)
conditions with 2D motion.
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(b) Proposed DS-TWR.

Figure 4.1: Timeline schematics for two tags i and j representing the different TWR ranging protocols,
where T` represents the `th timestamp for a TWR transaction and ∆t`k , T` − Tk.

Delays in communication between the embedded microchip and the UWB antenna are
another source of bias [23]. This antenna delay is roughly the same for different UWB tags
with the same physical design and is at least a few hundreds of nanoseconds [23], but can
vary tenths of a nanosecond or more from tag to tag due to manufacturing inaccuracies.
Given that a one-nanosecond timestamping error corresponds to 30 cm in ranging error, the
need to perform antenna-delay calibration for every tag is critical. In [23], a basic TWR-
based calibration procedure is suggested for calibrating antenna delays. However, the lack
of motion introduces a risk of learning the aforementioned relative-pose-dependent bias as
antenna delays. In [30], experiments involving a pair of tags at a time ranging with each other
is used to fit what is referred to as a “pair-dependent constant”. Therefore, the calibration
procedure involves calibrating the relative delay between one pair at a time, which does not
scale well to systems with many UWB tags.

This chapter addresses the problem of calibrating UWB tags, and the main contributions
are as follows.

• An alternative DS-TWR protocol is proposed and is shown to mitigate the clock-skew-
induced bias.
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• A scalable antenna-delay calibration algorithm is presented that is robust to outliers
and pose-dependent bias.

• The bias-versus-FPP fit presented in [30] is extended to also address the uncertainty
of the measurements as a function of FPP, and DS-TWR is utilized to overcome the
need to estimate the clock skew.

• The proposed antenna-delay and bias-FPP calibration are evaluated on an aerial ex-
periment with no anchors, where all the tags are fitted to moving robots.

• The code for the full calibration procedure is attached to this chapter as an open-access
online repository, which can be found at https://github.com/decargroup/uwb_calibration.

The remainder of this chapter is organized as follows. The proposed DS-TWR is dis-
cussed in Section 4.2, alongside a theoretical analysis of the clock-skew-dependent bias. In
Section 4.3, a robust antenna-delay calibration algorithm is presented, followed by the bias
and uncertainty calibration as a function of FPP in Section 4.4. The calibration methods
presented in Sections 4.3 and 4.4 are introduced on the same experimental training data,
and are then evaluated on 2 testing experiments in Section 4.5.

4.2 The Ranging Protocol

UWB ranging relies on the ToF of signals between two tags in order to compute range
measurements. The simplest way to do this is using SS-TWR, shown in Figure 4.1a, where
the ToF measurement can be computed as

tf =
1

2
(∆t41 −∆t32). (4.1)

However, different UWB tags have different clocks that are typically running at different
rates, and this clock skew results in additional bias in the computed ToF measurement.
In [21], an alternative DS-TWR-based ranging protocol is proposed to mitigate clock-skew-
dependent bias. In this paper, the DS-TWR protocol shown in Figure 4.1b is proposed,
which differs from [21] by having the responding tag instead of the initiating tag transmit
the third signal. The ToF measurement can then be computed as

tf =
1

2

(
∆t41 − ∆t64

∆t53
∆t32

)
. (4.2)

This protocol is motivated by the intuitive understanding that the additional correcting
factor in (4.2) transforms ∆t32 from time units of the receiver tag’s clock to time units of the

https://github.com/decargroup/uwb_calibration
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initiator tag’s clock. Additionally, the proposed ranging protocol allows the initiating tag
to process the range measurement by computing (4.2), without requiring additional signals
for the responding tag to send ∆t32 and ∆t53. Lastly, the proposed ranging protocol will
be shown to be equivalent to the Cramer-Rao lower bound (CRLB) for the ToF estimation
problem in Section 5.3.

4.2.1 Analytical Bias Model

To demonstrate clock-skew-dependent bias, consider in SS-TWR the clock-skew-corrupted
ToF measurement,

t̃ssf =
1

2

(
(1 + γi)(∆t

41 + η41)− (1 + γj)(∆t
32 + η32)

)
, (4.3)

where γi is the skew of Tag i’s clock relative to real time, ηk` = ηk−η`, and ηk, η` ∼ N (0, R)

are mutually-independent timestamping white noise associated with timestamps Tk and T`,
respectively. The ToF error is thus

ess , t̃ssf − tf

=
1

2

(
γi∆t

41 + (1 + γi)η
41 − γj∆t32 − (1 + γj)η

32
)
, (4.4)

and the expected value of ess is

E [ess] =
1

2

(
γi∆t

41 − γj∆t32
)

(4.1)
=

1

2

(
γi(2tf + ∆t32)− γj∆t32

)

= γitf +
1

2
(γi − γj) ∆t32. (4.5)

The first component of (4.5) is negligible as skew is in the order of tens of parts-per-
million and ToF in the order of nanoseconds. However, ∆t32 is typically in the order of
hundreds of microseconds, meaning that clock-skew-dependent bias is not negligible.

Negating the second component of (4.5) is the motivation behind the proposed ranging
protocol. Rewriting (4.2) as

tf =
∆t41∆t53 −∆t64∆t32

2∆t53
,

and following the same steps as in (4.3)-(4.4), the ToF error for the proposed DS-TWR can
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be derived to be approximately

eds , t̃ds
f − tf

≈ γitf +
1

2
(1 + γi)

[
∆t32

∆t53
(η53 − η64) + η41 − η32

]
, (4.6)

where t̃ds
f is the clock-skew-corrupted time-of-flight measurement. Deriving (4.6) relies on

the assumptions that ∆t53 � ‖η53‖, ∆t32 � ‖η32‖. This is expected since the timestamping
error is typically in the order of tenth of nanoseconds, and the delay intervals are in the
order of hundreds of microseconds. The expected value of the error is therefore

E
[
eds
]

= γitf ,

which suffers from less bias when compared to the error of the SS-TWR protocol.

4.3 Antenna-Delay Calibration

The delay between a chip timestamping transmission and the antenna actually transmitting
the signal is referred to as the antenna transmission delay dt, while the delay between an
antenna receiving a signal and the chip timestamping reception is the antenna reception
delay dr. Looking back at Figure 4.1b, the measured timestamps are therefore

T̃k = Tk + dt, k ∈ {1, 3, 5}, (4.7)

T̃` = T` + dr, ` ∈ {2, 4, 6}. (4.8)

In this section, a scalable antenna-delay calibration procedure is presented that addresses
the need for incorporating motion. In particular, a linear least-squares approach is presented
utilizing DS-TWR, which is solved using robust least squares to accommodate for outliers
[71, Section 5.4.2]. Both the antenna delays and the presented approach are environment
independent, and therefore the antenna-delay calibration only needs to be performed once
for new uncalibrated transceivers.

4.3.1 Least Squares Formulation

The goal of antenna-delay calibration is to find the best-fit delays based on some collected
data. In order to perform this calibration procedure, the tags to be calibrated must be
capable of DS-TWR. The effect of antenna delays on the DS-TWR ToF measurements is
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shown by substituting (4.7) and (4.8) into (4.2), thus yielding

tf =
1

2

(
∆t̃41 + dt

i − dr
i︸ ︷︷ ︸

di

−∆t̃64

∆t̃53

(
∆t̃32−dt

j + dr
j︸ ︷︷ ︸

−dj

))
(4.9)

when Tag i initiates with Tag j, where dt
i and dr

i are the antenna transmission and reception
delays of Tag i, respectively. In this case, transmission and reception delays can be combined
into one delay variable di to be estimated for every tag, where di = dt

i − dr
i. This is sufficient

for systems where only TWR is utilized, which is the focus of this thesis. When other ranging
protocols are implemented such as time-difference-of-arrival (TDoA) or time-of-arrival (ToA),
another antenna-delay calibration procedure is necessary to solve for dt

i and dr
i separately.

In the presence of n tags to be calibrated, let P denote the ordered set of tuples represent-
ing all ranging pairs of tags. Consequently, the antenna delays are calibrated by formulating
a least-squares problem as

d̂ = arg min
d∈Rn

∑

(i,j)∈P

mij∑

k=1

g
(
eijk (d)

)
, (4.10)

where the error eijk is defined from (4.9) as a linear function of the delays as

eijk (d) =
1

2
(di +Kkdj)− tf,k +

1

2
(∆t̃41

k −Kk∆t̃
32
k ),

mij is the number of range measurements between Tags i and j, d =
[
d1 · · · dn

]T
, the

subscript k denotes the kth measurement, and Kk , ∆t̃64
k /∆t̃

53
k . Moreover, g is the loss

function, and the choice of g is discussed in Section 4.3.2.
If n = 2, the formulated least-squares problem would have 2 unknowns and only 1 pair

of ranging tags, which results in non-uniqueness of the solution. Therefore, the calibration
procedure should involve at least 3 tags, yielding 3 unknowns and 3 pairs of ranging tags.

4.3.2 Experimental Results on Training Data

To evaluate the proposed antenna-delay calibration procedure experimentally, three Uvify
IFO-S quadcopters are equipped with 2 UWB tags each as shown in Figure 4.2a, for a total
of 6 tags. Details on the UWB modules and the quadcopters can be found in Appendix
A. In order to compute the theoretical ToF tf for any measurement to formulate a similar
problem to (4.10), a motion-capture system is used to get the ground truth distances between
the ranging tags. A motion-capture system is chosen for its mm-accuracy, but any other
localization approach would suffice, with the accuracy of the calibration depending on the
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(a) Quadcopter equipped with two UWB
tags.

(b) Snapshot from training experiment.

Figure 4.2: Experimental set-up for antenna-delay and bias-FPP calibration.

accuracy of the localization algorithm. Unlike the static experiments suggested in [23], this
allows a dynamic experiment where the quadcopters fly randomly in 3-dimensional space
as shown in Figure 4.2b, which reduces the proneness to learning relative-pose-dependent
biases as antenna delays. This dataset consists of 4 minutes of flight time and a total of
38000 range measurements. The calibration procedure can be done by fitting each drone
with one tag, but two tags are used here as this set-up will be used in the remainder of
this thesis as motivated in Chapter 3. The ranging schedule does not directly involve TWR
measurements between any two tags on the same drone. Therefore, there are 6 unknown
delays and 12 pairs of ranging tags.

Typically, problems of the form (4.10) are solved by finding d that minimizes the squared
error (i.e., choosing g to be L2 loss), which is derived from an assumption that the underlying
distribution of the noise is Gaussian. However, UWB measurements suffer from positive
outliers due to multipath propagation and other sources of error, and are better modelled
using Cauchy distributions [29]. It is therefore proposed for this particular application to
minimize the Cauchy loss g(x) = log (0.5x2 + 1) instead to solve (4.10) while reducing the
effect of outliers [71, Section 5.4.2].

The use of the Cauchy loss is found to be useful for mitigating the effect of positive
outliers as the mode of the bias distribution becomes 0, as shown in Figure 4.3. Moreover,
the precision of the proposed approach is evaluated by comparing antenna-delay solutions
derived from 2 datasets collected one month apart, and the delays converge to the same
result within 0.03 ns of accuracy, which corresponds to less than 1 cm of ranging error.
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Figure 4.3: Histograms showing the effect on the ranging bias post-antenna-delay calibration. (Top) Using
L2 loss. (Bottom) Using Cauchy loss.

4.3.3 Using Calibrated Tags to Calibrate New Tags

In [30], the sum of the antenna delays for every pair of tags (i, j) is calibrated as one constant
cij, which for the DS-TWR protocol would be of the form cij = di + Kdj. This approach
requires that calibration is done for every pair of tags, which is tedious and not scalable.
That is due to the fact that lumping the delay terms into one constant fails to utilize the
constant delay terms that appear in different pairs.

By solving for the aggregate antenna delays di and dj individually, this allows calibrating
a new tag without collecting data between the new tag and all previously calibrated tags.
In order to calibrate a new tag Tag j, only one calibrated tag Tag i is required, which then
allows solving for dj from (4.9) as

d̂j =
2tf −∆t̃41 − d̂i

K
+ ∆t̃32.

However, it is still recommended to collect more data using a dynamic experiment with the
two tags in order to improve robustness to noise and pose-dependent bias.
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4.4 Power-Correlated Calibration

Another source of error in UWB-based ranging is irregularities in the antenna radiation
pattern and system design elements, such as PCB-induced losses. Typically, such losses
introduce biases in the measurements that are pose-dependent and that are correlated with
the received signal power [24], [30]. In this section, the experiments in [30] are extended in
the following ways.

1. The proposed DS-TWR is used rather than SS-TWR, which overcomes the need to
estimate the skew between all pairs of tags.

2. The results are shown to hold for experiments in three-dimensional space.

3. The results are shown to hold for experiments with some non-LOS measurements due
to occlusions from the quadcopters’ bodies.

4. The individual measurements are used in the data-fitting process rather than averaging
out measurements from a discrete number of relative poses.

The last point is particularly important as it overcomes the need to remain static during
data collection, which allows the calibration procedure to be a simple experiment of robots
moving randomly and covering as many relative poses as possible in a relatively short period
of time. Another advantage of using all the data in the calibration process is that there is no
loss of variance information through averaging out similar measurements. Consequently, the
relation between the variance of the measurements and the received signal power can then
be analyzed.

4.4.1 Bias Calibration

The bias calibration procedure is similar to the one presented in [30]. The reception times-
tamp at Tag i is usually corrupted by an unknown function ρi(·) of the received FPP pf ;
therefore, from (4.2),

tf =
1

2

(
∆t̃41 + ρi

(
pf

4

)
− ∆t̃64

∆t̃53 + ρi
(
pf

6

)
− ρi

(
pf

4

) (∆t̃64 − ρj
(
pf

2

)) )

(a)≈ 1

2

(
∆t̃41 − ∆t̃64

∆t̃53
∆t̃64

)
+

1

2

(
ρi
(
pf

4

)
+ ρj

(
pf

2

))

,
1

2

(
∆t̃41 − ∆t̃64

∆t̃53
∆t̃64

)
+ f

(
Ψ

(
pf

4 + pf
2

2

))
, (4.11)
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Figure 4.4: The fitted bias and standard deviation curves as a function of the lifted average FPP, using a
4-minute long training experiment.

where pf
i is the FPP associated with timestamp Ti, and Ψ(x) , 10(x−α)/10 is the lifting

function suggested in [30] with α as a normalization parameter. Moreover, f(·) is an unknown
function to be learned from data, defined based on an experimentally-motivated assumption
that the effects of power-correlated bias due to the individual tags can be aggregated into one
function of the average received FPP that is common to all tags of similar design. The step
(a) in the derivation involves the assumptions that ρi

(
pf

6

)
= ρi

(
pf

4

)
and ∆t̃64

∆t̃53
ρj
(
pf

2

)
≈ ρj

(
pf

2

)
.

The former assumption is due to the fact that the motion of the robots is negligible in the
time window ∆t64 and therefore the relative-pose between the two tags is similar, while the
later assumption is due to ρj

(
pf

2

)
being in the order of tenths of nanoseconds, and therefore(

1− ∆t̃64

∆t̃53

)
ρj
(
pf

2

)
≈ 0.

Referring back to the experiment mentioned in Section 4.3, the function f is learned by
simply fitting a spline to the post-antenna-delay-calibration range bias as a function of the
lifted average FPP. The result is shown at the top of Figure 4.4 for all individual pairs as
well as for all the data, where the ToF bias is converted to range bias. As expected, when the
antenna delay is corrected first, the bias-power curve is similar for all pairs as they all use
the same antenna and PCB-board design. In this case, this additional calibration procedure
can remove up to 10 cm of bias, but even though this calibration procedure is environment
independent [30], this would vary for different tag designs and this process must be done
separately for different antenna/board designs.
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4.4.2 Variance Calibration

The variance of the measurements is also expected to vary as a function of the received-signal
power, that is,

E[(t̃f − tf)2] , σ

(
Ψ

(
pf

4 + pf
2

2

))2

,

where σ is an unknown mapping from the lifted average FPP to the variance. Intuitively,
it is expected that the receiver should be able to detect and timestamp the direct-path
signal more accurately when the FPP is high as this indicates a high signal-to-noise ratio
(SNR). Additionally, multipath and obstacle-attenuated signals typically have lower FPP,
and therefore not a lot of variance is expected at higher received FPP. At lower received
FPP, the SNR is lower, and the received measurements might have been corrupted with
equally-powerful multipath and body-attenuated signals.

In order to analyze this experimentally using the training data, a similar procedure to the
power-bias calibration step is proposed. The standard-deviation samples are generated by
computing the standard deviation of the range bias of the measurements in a window of FPP.
A spline is fitted to the standard-deviation samples, and the resulting curves are shown at
the bottom of Figure 4.4. As expected, the lowest standard deviation is at the highest FPP,
where the standard deviation of the range bias is as low as 2.5 cm. Additionally, the highest
standard deviation of approximately 17 cm is in the mid-FPP region. This is potentially
due to reflections off the ground being primarly in this region.

Even though there is a clear trend, the standard deviation curves appear to somewhat
vary between different pairs. This is partly due to the training experiment being relatively
short, and at some FPP values there is not enough data points to accurately compute the
standard deviation. Additionally, despite the curve seeming to slope downwards at lower FPP
values, it is expected that at some point as the received FPP value decreases beyond the
lower detection threshold the variance will increase drastically. However, the lower detection
threshold is chosen to be higher than the point where random meaningless signals would be
detected, and therefore the point where the variance increases significantly does not appear
in the recorded experiment.

4.5 Experimental Results on Testing Data

The proposed calibration procedure from Sections 4.3 and 4.4 is evaluated on 2 testing
experiments with the same set-up as the training experiment presented in Section 4.3.2.
While in the training experiment the quadcopters follow a more structured trajectory, the
testing experiments involve the quadcopters flying around the 3-dimensional space randomly.
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Figure 4.5: Distribution of the testing-data range bias pre- and post-calibration, with collection bins indi-
cating the amount of outliers beyond the axes.

Each testing experiment consists of 60 seconds of flight time and 10000 range measurements
between the 12 pairs.

4.5.1 Bias Correction

The distributions of the resulting biases in the testing data pre- and post-calibration are
shown in Figure 4.5. The mean of the bias of the raw measurements is reduced by 36%
through antenna-delay calibration only and by a further 20% by fully calibrating the mea-
surements, bringing the mean from 11.11 cm to 5.91 cm. The standard deviation of the
measurements is barely affected by antenna-delay calibration, but is reduced approximately
6% through power-correlated calibration from 18.95 cm to 17.82 cm. Both the mean and
standard deviation are affected by positive outliers potentially resulting from non-LOS and
multipath propagation.

In order to reject outliers, the underlying distribution must be known. Through the
variance calibration procedure, the range measurements are assumed to be corrupted with
zero-mean Gaussian noise with a standard deviation given by (4.12). The Gaussian-noise
assumption (rather than for example Cauchy noise) is due to the nice properties of the
Gaussian distribution as discussed in Section 2.1.1, which allows the use of computationally
efficient filtering techniques like the KF discussed in Section 2.4. An outlier can be rejected
if it does not satisfy the underlying distribution with a certain degree of confidence. For
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Figure 4.6: The range bias for 2 ranging pairs in one testing experiment after calibration, with some statistical
information.

each individual measurement k with ground-truth-computed bias bk and power-correlated
standard deviation σk from (4.12), this can be done by performing the chi-squared test [50,
Section 1.4.17]. Any measurement that does not satisfy the inequality b2k

σ2
k
≤ γ indicates that

it is not from the underlying distribution to a certain degree of confidence. The threshold γ
depends on the chosen degree of confidence, typically 95%.

The results of this standard outlier-rejection algorithm are shown in Figure 4.6. An
indication of the calibrated variance being close to the actual underlying distribution would
be that exactly 5% of measurements are rejected; however, due to other factors such as non-
LOS and multipath propagation, more than 5% of measurements are rejected for some pairs.
Even in this non-ideal scenario with non-LOS and multipath, the mean of the measurements
after outlier rejection among all pairs reduces to a maximum of roughly 4 cm and a maximum
standard deviation of approximately 8 cm.

4.5.2 Position Estimator

In real-world applications, the ground truth distance between tags is usually not known but
is rather estimated, and the outlier rejection method is usually done using the NIS discussed
in Section 2.4.2. The NIS test is similar to the chi-squared test mentioned in Section 4.5.1,
but additionally accommodates for uncertainty in the state estimates.
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Figure 4.7: Comparison of the position-estimate RMSE using raw and calibrated data for one testing-data
scenario.

To evaluate the variance calibration using the NIS test, the following simple localization
problem is formulated using the testing data. Consider the problem of estimating r1w

a , the
position of Robot 1 relative to some arbitrary reference point w, resolved in some inertial
frame Fa. There are two tags on the robot, and ri11 represents the position of Tag i relative
to the robot’s reference point in the robot’s own body frame F1, which can be measured
manually. Additionally, assume that the orientation of the robot given by a direction cosine
matrix C1a ∈ SO(3) is known, and that velocity measurements v1w

a are available from the
motion-capture system. Assuming that poses and tag positions of the neighbouring robots
n ∈ {2, 3} are known, an extended Kalman filter (EKF) is used to estimate r1w

a , where the
measurements are modelled as

y =
∥∥r1w

a + CT
1ar

i1
1 − rnwa − CT

nar
jn
n

∥∥+ ν

for the range measurement between Tag i on Robot 1 and Tag j on Robot n, and ν ∼ N (0, R)

is white Gaussian noise. The NIS test is used in the filter for outlier rejection.
The performance of the filter is shown based on the root-mean-squared-error (RMSE)

metric in Figure 4.7 for one experimental run and summarized in Table 4.1 for 6 different
scenarios using 1) the raw measurements and fixed variance, 2) the calibrated measurements
and fixed variance, and 3) the calibrated measurements and the calibrated variance-power
curve. The 6 scenarios represent a variation of which of the three robots is the one with
an unknown position to be estimated, and doing so in two different experimental runs. The
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Table 4.1: RMSE comparison for the raw and calibrated measurements in all 6 testing-data scenarios.

RMSE [m]
Robot
no. Raw Calibrated Calibrated

w/ Variance

Experiment 1
1 0.9245 0.5122 0.4243
2 0.7577 0.5095 0.4437
3 0.6731 0.3872 0.3467

Experiment 2
1 0.8664 0.4879 0.4932
2 0.8174 0.5854 0.3980
3 0.7837 0.5167 0.4788

choice of fixed measurement variance is decided experimentally based on what consistently
yields the best performance. On average for the 6 different scenarios, the antenna-delay
and bias-calibration procedures alone yield a 38% improvement in localization accuracy,
while additionally utilizing the power-correlated variance calibration results in an average of
46% reduction in the RMSE, thus emphasizing the importance of calibrating UWB sensors
and the added benefit of using the received FPP as an indication of the uncertainty of
measurements.

4.6 Conclusion and Future Work

In this chapter, the problem of calibrating UWB bias is addressed to improve the accuracy
of the range measurements, and, in turn, improving the performance of the localization
algorithms. To eliminate the need for estimating the clock states, a DS-TWR-based ranging
protocol is presented and shown to theoretically mitigate the effect of clock-skew-dependent
bias. Furthermore, a robust and scalable antenna-delay calibration procedure is presented
and trained on data from an aerial experiment. A model is then learned on the experimental
data to find the relation between the remaining bias and the uncertainty of the measurements
as a function of the received-signal power. The delays and models learned are then applied
to two testing experiments to evaluate the calibration procedure. This framework required
the replacement of the Pozyx UWB tags with the custom-built UWB tags to have the low-
level access necessary to implement the proposed ranging protocol and obtain the necessary
information to undertake the calibration procedure. Finally, a localization problem is then
formulated using an EKF, and it is shown that an average of 46% improvement in localization
accuracy can be achieved by using the corrected measurements and the modelled variance.

The calibration procedure is made open-source as a Python library, which can be found
at https://github.com/decargroup/uwb_calibration. Providing this open-source code will

https://github.com/decargroup/uwb_calibration
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allow other researchers and practitioners to easily calibrate their UWB systems and improve
the accuracy of their localization algorithms. This also allows for the calibration procedure to
be tested on new environments, robots, and UWB tags. Future work will involve addressing
how to identify non-line-of-sight (NLOS) conditions from the metrics recorded in the registers
of the DWM1000 module.

Despite addressing the bias in the measurements and characterizing their uncertainty,
this chapter does not address how to reduce the variance of the measurements. This turns
out to be a function of ∆t41 and ∆t32. These timing delays will be optimized in the next
chapter in order to minimize the variance in the measurements while ensuring a sufficient
ranging frequency.



Chapter 5

Reducing Two-Way Ranging Variance by
Signal-Timing Optimization

Summary

The previous chapter addressed improving the accuracy of the range measurements. In doing
so, a variation of the DS-TWR has been adopted due to its accuracy; however, the precision
of DS-TWR has not been clearly addressed. In this chapter, an analytical model of the
variance of DS-TWR is derived as a function of the user-programmed response delays, which
is then compared to the Cramer-Rao Lower Bound (CRLB). This is then used to formulate
an optimization problem over the response delays in order to maximize the information
gained from range measurements. The derived analytical variance model and optimized
protocol are validated experimentally with 2 ranging UWB transceivers, where 29 million
range measurements are collected.

5.1 Introduction

Despite requiring an additional message transmission, the main motivation behind DS-TWR
as compared to SS-TWR is to correct the clock-skew-dependent bias, which improves the
accuracy of the measurements as discussed in Chapter 4. DS-TWR can also be used in the
correction of other sources of error, such as the warm-up error [72]. Nonetheless, the preci-
sion of DS-TWR measurements as compared to SS-TWR measurements is a less commonly-
addressed topic, where precision is typically measured by the variance of the range measure-
ments. The variance of TWR measurements has been derived analytically as an approximate
function of the true range [73], [74], the low-level features of the signal such as the pulse shape

56
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[75], the surrounding environment [73], or experimentally for some fixed timing intervals [76].
The main focus of this chapter is to extend the comparison between SS-TWR and DS-

TWR measurements to include the variance as a function of the timing delays in between
message transmissions, as shown in Figure 4.1, which allows optimizing signal timing in
DS-TWR to improve precision. Currently, the length of timing delays is arbitrarily chosen;
for example, the default DS-TWR code for the commonly-used DW1000 UWB modules [7]
appears to include arbitrarily-chosen timing delays without any justification. This chapter
therefore presents an easily-implementable approach to setting these delays to improve the
precision of the range measurements, which in the case of the DW1000 modules is as simple
as changing one number in the default code.
The contributions of this chapter are as follows.

• Deriving an analytical model of the variance of SS-TWR and DS-TWR as a function
of the timing of message transmissions.

• Comparing the derived DS-TWR analytical variance to the Cramer-Rao Lower Bound
(CRLB).

• Formulating an optimization problem for DS-TWR as a function of the signal timings
to maximize the information collected in one unit of time.

• Analyzing the effect of relative motion during ranging for DS-TWR.

• Validating experimentally the analytical model and the optimization procedure using
static UWB transceivers.

The remainder of this chapter is organized as follows. After introducing the notation and
assumptions in this paper, the analytical model of the variance and the mean squared error
(MSE) of TWR measurements are derived in Section 5.2, and the former compared to the
CRLB in Section 5.3. The timing-optimization problem is formulated in Section 5.4, and
experimental validation is then shown in Section 5.5.

5.1.1 Notation

The notation used in this section is similar to the notation used in Section 4. The ith time
instance in a TWR transaction is denoted Ti ∈ R as shown in Figure 4.1, and Tij denotes the
ith time instance as timestamped by Transceiver j. The length of time between two time
instances ` and k is denoted ∆tk` , Tk − T`. These can also be resolved in a Transceiver’s
clock, such as ∆tk`j = Tkj − T`j. The ToF between Transceivers i and j is denoted tf , and



CHAPTER 5. REDUCING TWO-WAY RANGING VARIANCE BY SIGNAL-TIMING OPTIMIZATION 58

an estimate of the ToF is denoted t̂f . The time-varying clock offset τi(t) of Transceiver i is
defined as τi(t) , ti(t) − t, where ti(t) is the time t resolved in Transceiver i’s clock. The
clock skew of Transceiver i is denoted γi and is defined as

γi(t) , τ̇i(t) = lim
∆t→0

1

∆t
(τi(t+ ∆t)− τi(t)) .

5.1.2 Assumptions

It is assumed that clock skews are constant during a ranging transaction, which is a common
assumption in localization applications due to the clocks’ slow dynamics [21], [68]. Therefore,
under a first-order approximation, the clock offset at two different time instants separated
by ∆t can be approximately related by

τi(t+ ∆t) ≈ τi(t) + γi(t)∆t. (5.1)

The IEEE 802.15.4a standard for radio-frequency systems accommodates for clock skews
up to ±20 parts-per-million (ppm) [21], [77], which is the order of the worst-case clock skew
assumed in this chapter. Therefore, throughout this chapter, it is assumed that γi � 1.

Furthermore, it is assumed that tf � ∆t32 and tf � ∆t53, which is a reasonable assump-
tion for short-range systems up to the order of tens or hundreds of meters. For example, 30
meters is equivalent to a ToF of 100 ns, while ∆t32 and ∆t53 are typically in the order of
milliseconds or hundreds of microseconds to allow sufficient processing time in between trans-
mitted messages. This assumption is less accurate for long-distance ranging, for example in
the order of kilometres or more, which nonetheless is not common in UWB ranging.

Due to the aforementioned assumptions, approximations such as γi∆t41 ≈ γi∆t
32 are

made throughout this chapter. This follows from the term γitf being much smaller than
γi∆t

32, since tf � ∆t32 and γitf corresponds to a value that is in the order of tens or
hundreds of micrometers when multiplied by the speed of light, and can thus be neglected.

5.2 TWR Variance

5.2.1 Modelling the Timestamps

The measurement models for the timestamps recorded by Transceivers i and j in Figure
4.1 are first presented under the assumption that all transceivers are static. The noisy
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timestamps recorded by Transceiver i in Figure 4.1a are modelled as

T1
i = T1 + τi(T

1) + η1, (5.2)

T4
i = T1 + 2tf + ∆t32 + τi(T

4) + η4, (5.3)

where η` is random noise on the `th measurement. All random noise variables on timestamps
are assumed to be mutually independent, zero-mean, and with the same variance σ2.

Similarly, the noisy timestamps recorded by Transceiver j in Figure 4.1a are modelled as

T2
j = T1 + tf + τj(T

2) + η2, (5.4)

T3
j = T1 + tf + ∆t32 + τj(T

3) + η3, (5.5)

while the additional timestamps when performing DS-TWR as in Figure 4.1b are modelled
as

T5
j = T1 + tf + ∆t32 + ∆t53 + τj(T

5) + η5, (5.6)

T6
i = T1 + 2tf + ∆t32 + ∆t53 + τi(T

6) + η6. (5.7)

Based on the aforementioned assumptions in Section 5.1 and the relation in (5.1), the
offsets in (5.2)-(5.7) can be written as a function of the clock skew, the clock offsets at T1,
and the time delays ∆t32, ∆t53. For example,

τi(T
6) = τi(T

1 + ∆t61)

≈ τi(T
1) + γi(T

1)∆t61

≈ τi(T
1) + γi(T

1)(∆t32 + ∆t53).

A similar process can be followed for the other offsets. The remainder of this chapter will
oftentimes drop the explicit dependence on T1 from the notation for brevity.
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5.2.2 Deriving SS-TWR Variance

A SS-TWR ToF estimate t̂f of the true ToF tf can be computed from (5.2)-(5.5) as

t̂ssf =
1

2
(∆t41

i −∆t32
j )

=
1

2

(
2tf + ∆t32 + γi∆t

41 + η41 − (1 + γj)∆t
32 − η32

)

≈ tf +
1

2
γij∆t

32 +
1

2
(η41 − η32),

where γij , γi− γj, ηk` , ηk − η`, and γi∆t41 ≈ γi∆t
32. Defining the SS-TWR ToF error as

ess , t̂ssf − tf , the expected value of the error is

E[ess] =
1

2
γij∆t

32, (5.8)

which means that t̂ssf is in fact a biased measurement of tf as is shown in Chapter 4. Mean-
while, the covariance on the measurement is

E[(ess − E[ess])2] = σ2. (5.9)

5.2.3 DS-TWR Variance

The main motive behind using DS-TWR protocols rather than SS-TWR protocols is to
correct the clock-skew-dependent bias in (5.8). As shown in (4.6), the DS-TWR ToF estimate
from (5.2)-(5.7) can be modelled as

t̂ds
f =

1

2

(
∆t41

i −
∆t64

i

∆t53
j

∆t32
j

)
(5.10)

≈ tf +
1

2

(
∆t32

∆t53
(η53 − η64) + η41 − η32

)
, (5.11)

where the approximations γitf ≈ 0 and γiη ≈ 0 are used since the clock skew, time-of-flight,
and timestamping noise are all small. Defining the DS-TWR ToF error as eds , t̂ds

f − tf , the
expected value of the error is

E[eds] = 0,

meaning that unlike t̂ssf , the estimate t̂ds
f is unbiased.

Having readdressed the accuracy of the measurements for SS-TWR and DS-TWR, it
might appear that DS-TWR should always be used. However, the choice of the ranging
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protocol should also depend on the precision of the measurements. By manipulating (5.11),
the covariance of t̂ds

f can be found to be of the form

E[
(
eds − E[eds]

)2
] = σ2

(
1 +

∆t32

∆t53
+

(
∆t32

∆t53

)2
)
. (5.12)

Therefore, the variance of DS-TWR measurements is greater than SS-TWR measurements,
and approaches the variance of SS-TWR as ∆t32 → 0 and/or ∆t53 → ∞. The ∆t32 → 0

condition is due to the effect of the length of ∆t32 on the bias, and the ∆t53 →∞ condition
is due to the fact that the ratio ∆t64

∆t53
is being used to obtain a clock-skew measurement, and

the longer the ∆t53 interval is the greater the signal-to-timestamping-noise ratio.

5.2.4 Mean Squared Error of SS-TWR and DS-TWR

Knowing the mean-bias and the variance of the ToF estimates for SS-TWR and DS-TWR
allows computing the mean squared error (MSE) of the estimates. The MSE of SS-TWR
from (5.8) and (5.9) is

E
[
(ess)2

]
= E

[
(ess − E[ess])2

]
+ E[ess]2

= σ2 +
1

4
γ2
ij(∆t

32)2, (5.13)

and the MSE of DS-TWR is the same as (5.12) since the estimate is unbiased.
Therefore, the MSE of DS-TWR is lower than the MSE of SS-TWR when

σ2

(
1 +

∆t32

∆t53
+

(
∆t32

∆t53

)2
)
< σ2 +

1

4
γ2
ij(∆t

32)2,

which can also be written as

|γij| >
2σ

∆t53

√
∆t32 + ∆t53

∆t32
. (5.14)

The right-hand-side of (5.14) is plotted in Figure 5.1 for σ = 0.0682 ns, where the value for σ
is determined experimentally in Section 5.5. Given that |γij| is expected to range between 0
and 40 ppm, it is very likely that the MSE of DS-TWR will be lower than that of SS-TWR,
except for highly-accurate clocks with lower skew resulting in lower measurement bias.
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Figure 5.1: The value of the right-hand-side of (5.14) for different values of ∆t32 and ∆t53 when σ = 0.0682
ns. These curves represent a lower bound for the magnitude of the clock skew γij for which the MSE of
DS-TWR is lower than the MSE of SS-TWR.

5.3 Cramer-Rao Lower Bound of DS-TWR

Given that now an analytical model is available of the variance of the range estimate provided
by the DS-TWR protocol (5.10), the variance of the estimator can be compared to the CRLB
[78, Chapter 3].

When two transceivers are ranging with one another, time instances in global time and
offsets of individual clocks remain unknown, and only the time instances in a transceiver’s
clocks and relative offset between the two transceivers can be estimated. Therefore, the
unknown quantities to be estimated from (5.2)-(5.7) can be summarized in a state vector

x =
[
tf T τij γij ∆t32

j ∆t53
j

]T
,

where T = T1 + τi(T
1) and τij , τi(T

1) − τj(T1). Additionally, under the assumption that
γij

1+γj
≈ γij since γj � 1, it can be shown that

∆t32
i ≈ (1 + γij)∆t

32
j ,

∆t53
i ≈ (1 + γij)∆t

53
j .
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Therefore, the timestamp measurements (5.2)-(5.7) can be written as

T1
i (x) = T + η1,

T2
j(x) = T + tf − τij + η2,

T3
j(x) ≈ T + tf − τij + ∆t32

j + η3,

T4
i (x) ≈ T + 2tf + (1 + γij)∆t

32
j + η4,

T5
j(x) ≈ T + tf − τij + ∆t32

j + ∆t53
j + η5,

T6
i (x) ≈ T + 2tf + (1 + γij)(∆t

32
j + ∆t53

j ) + η6,

where the approximation γitf ≈ 0 has been used. The measurement vector can then be
written as

y(x) =
[
T1
i T2

j T3
j T4

i T5
j T6

i

]T
,

which is a nonlinear function of the states x. Therefore, the measurement Jacobian can be
computed as

H =
∂y(x)

∂x

∣∣∣∣
x̄

=




0 1 0 0 0 0

1 1 −1 0 0 0

1 1 −1 0 1 0

2 1 0 ∆t̄32
j 1 + γ̄ij 0

1 1 −1 0 1 1

2 1 0 ∆t̄32
j + ∆t̄53

j 1 + γ̄ij 1 + γ̄ij




,

where overbars denote the linearization point. Additionally, define a measurement vector
covariance Σ , σ216, where 16 is the 6× 6 identity matrix.

The CRLB states that the covariance of any unbiased estimate x̂ of x, given the mea-
surements y(x) and an additive-Gaussian assumption on the measurement noise, is bounded
by [78, Appendix 3C]

E
[
(x− x̂)(x− x̂)T

]
≥ (HTΣ−1H)−1.

The minimum variance of the ToF estimate for the given timestamps can then be found by
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extracting the first component of (HTΣ−1H)−1, which can be found to be

σ2
(γ̄2
ij + 2γ̄ij + 2)((∆t̄32

j )2 + ∆t̄32
j ∆t̄53

j + (∆t̄53
j )2)

2(∆t̄53
j )2

.

Given that γ̄2
ij + 2γ̄ij � 2, this can be simplified to give exactly (5.12), thus showing that

under the aforementioned approximations the DS-TWR estimator is indeed the minimum-
variance unbiased estimator.

5.4 DS-TWR Timing Optimization

The timing delays ∆t32 and ∆t53 affect the variance of the range measurements, the rate of
the measurements, and the ranging error due to relative motion between the transceivers. In
Section 5.4.1, the choice of delays is motivated as a function of the variance and rate of the
measurements while assuming no relative motion between the transceivers. This assumption
is then validated in Section 5.4.2 for the DS-TWR protocol, showing that motion can indeed
be neglected when choosing the timing delays.

5.4.1 Finding Optimal Timing Delays

Given (5.12), minimizing ∆t32 within the limitations of the system is an obvious choice to
reduce the measurement variance. However, it is less clear what the right choice for ∆t53

is, as increasing this second-response delay reduces measurement variance but also reduces
the rate of measurements. The choice of ∆t53 is thus application-specific. Most commonly
in estimation applications, the goal is to minimize the variance of the estimates, which
is achieved by maximizing the information attained from measurements. Therefore, this
section poses an information-maximizing (variance-minimizing) optimization problem.

The amount of information obtained in one unit of time is a function of the variance of
the individual measurement and the number of measurements in that unit of time. As a
result, the optimal delay is one that is long enough to reduce the variance of the individual
measurement but short enough to ensure measurements are recorded at a sufficient rate.

The rate of the measurements is dependent on ∆t32+∆t53 as well as any further processing
required to retrieve the range measurements, such as reading the raw timestamps from the
registers and computing the range measurement from the raw timestamps. The time taken
for computational processing is defined as ρ, which is assumed to be constant for the same
experimental set-up. Therefore, the time-length of one measurement is ρ + ∆t32 + ∆t53

seconds long. The delay ∆t32 is to be minimized as much as the hardware allows, and ∆t53
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is to be optimized as follows. In one second, a total of
[

1
ρ+∆t32+∆t53

]
measurements occur,

meaning that the variance of averaging out the ToF estimates is, assuming independence,
given as

Ravg(∆t53) , [ρ+ ∆t32 + ∆t53]Rmeas(∆t
53), (5.15)

where Rmeas(∆t
53) is the variance of the individual measurement given by (5.12) for some

constant ∆t32. Ravg is referred to hereinafter as the averaged uncertainty, and can be thought
of as the inverse of accumulated information in one second. Finding the optimal delay ∆t53∗

is then found by solving
∆t53∗ = arg min

∆t53∈R
Ravg(∆t53). (5.16)

The derivative of (5.15) with respect to ∆t53 is

dRavg

d∆t53
= σ2 − (ρ+ ∆t32)

∆t32

(∆t53)2
σ2 − 2(ρ+ ∆t32)

(∆t32)2

(∆t53)3
σ2 − (∆t32)2

(∆t53)2
σ2,

and equating to 0 yields the cubic polynomial

0 = (∆t53)3 −∆t32(ρ+ 2∆t32)∆t53 − 2(∆t32)2(ρ+ ∆t32). (5.17)

This is a “depressed cubic equation” that can be solved analytically using Cardano’s method,
but the analytical solution is omitted here for conciseness. Additionally, this can be solved nu-
merically using standard libraries (such as Bullet’s cubic_roots function in C++ or NumPy’s
roots function in Python).

The value for T and the minimum value of ∆t32 can be determined experimentally and are
both processor and application dependent. As an example where ρ = 7.2 ms and ∆t32 = 0.35

ms, the optimal delay can be found analytically to be approximately 1.9 ms using (5.17).
The averaged variance Ravg as a function of ∆t53 for T = 7.2 ms at different values of ∆t32

is shown in Figure 5.2. As expected from (5.12), the averaged variance Ravg diverges as ∆t53

approaches 0 ms.

5.4.2 Relative Motion During Ranging

A constant distance throughout ranging is commonly assumed, but this assumption intro-
duces larger errors for longer response delays. To address this, assume the less-restrictive
case of no relative acceleration between the transceivers. In this case, the three ToF mea-
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Figure 5.2: The theoretical averaged variance Ravg as a function of the delay ∆t53 for 4 different values of
∆t32. All curves use ρ = 7.2 ms, which is experimentally determined for the set-up used in Section 5.5.
The vertical dotted lines correspond to the analytically-evaluated minimum of the colour-matched plotted
curves. The bottom plot is a close-up view of the top plot. Note that Ravg is converted from units of [s]2 to
[cm]2 by multiplying with c2 [cm2 / s2], where c is the speed of light, in order to visualize the variance on
the range measurements directly.

surements shown in Figure 4.1b are of different distances, and are related by

t2f = t1f + v̄∆t32, t3f = t2f + v̄∆t53,

where tif is the ToF of the ith message, v̄ = v/c, v is the rate of change of the distance
between transceivers, and c is the speed of light. Note that motion during the intervals ∆t32

and ∆t53 is addressed since the intervals are in the order of milliseconds. Meanwhile, ToF is
much shorter for short range measurements as discussed in Section 5.1, so motion in between
time of transmission and reception is negligible.

The computed ToF measurement using the DS-TWR protocol in the absence of clock
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Figure 5.3: The experimental set-up. (Left) Custom-built circuit board, using the DWM1000 UWB
transceiver. (Right) Two static tripods placed 1.5 metres apart, each holding a UWB transceiver.

offsets, skews, and timestamping noise is then

t̂ds
f =

1

2

(
∆t41 − ∆t64

∆t53
∆t32

)

=
1

2

(
t1f + ∆t32 + t2f −

∆t53 + t3f − t2f
∆t53

∆t32
)

=
1

2

(
2t1f + (1 + v̄)∆t32 − (1 + v̄)∆t53

∆t53
∆t32

)

= t1f ,

meaning that the computed ToF corresponds to the distance between the transceivers at
the beginning of ranging, and the error due to motion is independent from the delays ∆t32

and ∆t53. Therefore, a particular feature of the DS-TWR protocol presented in Chapter 4
is that the timing optimization can be done without addressing errors due to motion.

5.5 Experimental Evaluation

To evaluate the effect of the second-response delay ∆t53 on a real system, the following ex-
periment is performed. Two custom-made circuit boards equipped with DWM1000 UWB
transceivers [7] are fixed to two static tripods as shown in Figure 5.3. They are both con-
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Figure 5.4: The theoretical and experimental metrics as they vary with ∆t53. Each point corresponds to one
trial of 2500 measurements, and the solid line is the theoretical curve based on the derived analytical models
and the experimentally-computed variance σ2. The solid line matches the experimental readings. The plots
show the variation of the averaged variance Ravg as given by (5.15), the standard deviation as given by the
square root of (5.12), and the rate of the measurements as a function of ∆t53 for two different values of ∆t32.

nected to a Dell XPS13 computer running Ubuntu Desktop 20.04.
First, a SS-TWR experiment is performed with 145 trials, for a total of 362500 measure-

ments. Nothing varied in between trials, but the purpose of this experiment is to obtain the
average rolling variance of SS-TWR experiments in order to get a value for σ, which is found
to be σ = 0.0682 ns when averaging the variance over windows of 50 measurements. This
value is used to plot the theoretical curves in Figure 5.4. The need for computing a rolling
variance rather than a single value for all measurements is because of the bias of SS-TWR
measurements drifting over time due to the time-varying clock skew. Nonetheless, it is worth
mentioning that knowing exactly the value of σ is not necessary to perform the optimization
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in (5.16), as finding the optimal delay requires solving (5.17), which is independent of σ.
With knowledge of the derived theoretical curves and the value of σ, the DS-TWR exper-

iments are then performed to validate these values. The second-response delay ∆t53 is varied
in between many trials, and for each trial 2500 measurements are collected to compute the
average variance and rate for that specific value of ∆t53. The results for two different values
of ∆t32 are shown in Figure 5.4, where ρ = 7.2 ms is found experimentally to be the time
required by the computer to process a range measurement. The experiment with ∆t32 = 0.35

ms involves 5000 trials for a total of 12.5 million measurements, while the experiment with
∆t32 = 2 ms involves 6600 trials for a total of 16.5 million measurements.

Given that this is a static experiment, Ravg essentially represents the variance in the
measurement obtained by averaging out all recorded measurements over a span of one second.
Crucially, both experiments presented here match the theoretical expectations quite well.
As ∆t53 increases, both the standard deviation and the rate of the measurements decrease,
and the optimal ∆t53 can then be found by finding the value that minimizes Ravg. The
experimental minimum does match the theoretical minimum, thus motivating the presented
analytical optimization problem (5.16). Lastly, as expected, the experiments with a longer
∆t32 have an order of magnitude higher standard deviation in the measurements, and in
both experiments the standard deviation decreases as ∆t53 increases.

5.6 Conclusion

This chapter extends the comparison of SS-TWR and DS-TWR to include precision by
deriving an analytical model of the variance and the CRLB as a function of the signal
timings of the ranging protocols. This consequently allows optimizing over the timing delays
in order to minimize the variance of DS-TWR measurements, and an optimization problem
is then formulated to maximize information by balancing the effect of reduced variance and
reduced rate of measurements as timing delays increase. It is also shown that the effect
of motion is independent of the timing delays in the proposed DS-TWR protocol. Lastly,
the analytical variance model and optimization procedure are evaluated on an experimental
set-up with two static ranging UWB transceivers. Future work will address finding optimal
delays when the ranging protocol is customizable beyond DS-TWR, or when new TWR
instances can be initiated before others are done.

This therefore concludes the thrust on improving the range measurements to improve
the performance of the localization algorithms. The next chapter will address some of the
remaining issues discussed in Section 3.7 by presenting a framework that allows robots to
listen-in on neighbours ranging with one another. This, alongside the use of preintegration for
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compact IMU representation, allows the deployment of a scalable and decentralized system.
Additionally, a “robocentric” viewpoint will be considered, where robots estimate the relative-
pose states in their own body frame to overcome the need for a magnetometer. Lastly, the
relative-pose states will be represented as elements of SE2(3) to take advantage of the nice
mathematical properties of on-manifold state estimation, as discussed in in Section 2.3.



Chapter 6

Multi-Robot Relative Pose Estimation
and IMU Preintegration Using Passive
UWB Transceivers

Summary

A major constraint associated with UWB is that only one pair of UWB transceivers can
range at a time to avoid message collision, hence hindering the scalability of UWB-based
localization as discussed in Section 3.7. In this chapter, a ranging protocol is proposed that
allows all robots to passively listen on neighbouring communicating robots without any hi-
erarchical restrictions on the role of the robots. This is utilized to allow each robot to obtain
more range measurements and to broadcast preintegrated IMU measurements for relative
extended pose state estimation directly on SE2(3). This, in turn, allows implementing de-
centralized algorithms that no longer require central processors similar to the one assumed
in Chapter 3. Additionally, to overcome the need for a magnetometer, a “robocentric” view-
point is considered, meaning that robots estimate relative poses in their own body frames
rather than in a common local frame. Consequently, a simultaneous clock-synchronization
and relative-pose estimator (CSRPE) is formulated using an on-manifold extended Kalman
filter (EKF) and is evaluated in simulation using Monte-Carlo runs for up to 7 robots. The
ranging protocol is implemented in C on the custom-made UWB boards fitted to 3 Uvify
IFO-S quadcopters, where all the improvements in the UWB ranging accuracy and precision
from Chapters 4 and 5 have been implemented. The proposed filter is evaluated in simula-
tion and over multiple experimental trials, yielding up to 56% improvement in localization
accuracy for the latter.

71
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(a) Custom-made board fitted with
a DWM1000 UWB transceiver. (b) A Uvify IFO-S quadcopter equipped with two

UWB transceivers 45 cm apart.

Figure 6.1: The experimental set-up.

6.1 Introduction

Robotic teams equipped with UWB, as in Figure 6.1, and other sensors, such as cameras
and/or IMUs, have been considered for relative pose estimation, which is a prerequisite for
applications such as collision avoidance and collaborative mapping and infrastructure inspec-
tion. Nonetheless, using UWB for relative pose estimation in multi-robot teams introduces
a distinct set of problems, as discussed in Chapter 1. Firstly, UWB ranging and commu-
nication is not robust to message collision, thus imposing the constraint that only one pair
of transceivers can communicate at a time. This is typically addressed using time-division
multiple-access (TDMA) media-access control (MAC) protocols alongside a round-robin ap-
proach to determine which pair communicates at each time. However, the larger the team
of robots, the longer the time gaps in between a robot ranging with another. Another com-
plication with UWB ranging is the reliance on ToF measurements, which necessitates the
presence of a clock at each UWB transceiver. However, in practice, these clocks run at
different rates, and therefore require some synchronization mechanism. The importance of
synchronization can be highlighted by the fact that 1 ns in synchronization error translates
to c [m/s] × 10−9 [s] ≈ 30 [cm] in localization error, where c is the speed of light.

Another practical issue associated with multi-robot systems is communication constraints,
which limit the amount of information that can be transmitted between robots. In filtering
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Figure 6.2: The trajectories followed by three simulated quadcopters.

applications where there are for example 3 quadcopters moving randomly in 3-dimensional
space as shown in Figure 6.2, IMU measurements must be broadcasted if robots are to es-
timate their neighbours’ relative states directly from the raw measurements. Nonetheless,
IMU measurements are typically recorded at a very high frequency, and the constraint that
only one pair can be communicating at a time means that communication links between
robots do not always exist. Therefore, a more efficient way of sharing odometry information
is required.

To achieve a practical relative pose estimation solution that is implementable on a robotic
team, this chapter addresses the aforementioned constraints. The contributions of this chap-
ter are summarized as follows.

1. A ranging protocol is introduced that extends classical ranging protocols by allowing
neighbouring robots to passively listen to the measurements and timestamp receptions,
with no assumptions or imposed constraints on the robots’ hierarchy. The concept of
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passive listening is then utilized to provide a (1 + 3n)-fold increase in the number of
measurements recorded when there are a total of n+ 1 robots each equipped with two
UWB transceivers. The concept of passive listening is additionally utilized for more
efficient information sharing and implementing simple MAC protocols.

2. Representing the extended pose state as an element of SE2(3), an on-manifold tightly-
coupled simultaneous clock-synchronization and relative-pose estimator (CSRPE) is
then proposed, which allows incoporating passive listening measurements in an ex-
tended Kalman filter (EKF) to improve the relative pose estimation. This provides
a means for many different robots to estimate the relative poses of their neighbours
relative to themselves at a high frequency.

3. Rather than sharing high-frequency IMU readings with neighbours, the concept of
preintegration [79] is developed for relative pose states on SE2(3), and is used as
a means of efficient IMU data logging and communication between robots. This is
additionally incorporated in the CSRPE, where the theory behind filtering with delayed
inputs is developed as the preintegrated IMU measurements arrive asynchronously from
neighbouring robots.

4. The proposed algorithm is evaluated in simulation using Monte-Carlo trials and in
experiments using 4 trials with 3 quadcopters equipped with two UWB transceivers
each. It is shown that localization accuracy improves up to 23% when compared to a
centralized scenario and up to 48% when compared to the case of no passive listening.

The remainder of the chapter is organized as follows. Related work is presented in
Section 6.2. The problem is formulated in Section 6.3, then the proposed ranging protocol
is discussed in Section 6.4. The relative-pose process model and preintegration on SE2(3)

are discussed in Sections 6.5 and 6.6, respectively. Simulation and experimental results are
discussed in Sections 6.7 and 6.8, respectively, before further practical considerations are
mentioned in Section 6.9.

6.1.1 Notation

The notation used in this chapter is similar to the rest of this thesis, but is reiterated
here. The position of point z relative to point w is denoted r−→

zw. The relative velocity and
acceleration between points z and w with respect to frame i is denoted

v−→
zw/i , i ṙ−→

zw, a−→
zw/i , i v̇−→

zw/i.
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The rotation from a reference frame j to a reference frame i is parametrized using a ro-
tation matrix Cij ∈ SO(3). Therefore, the relationship between rzwi and rzwj is given by
rzwi = Cijrzwj .

To obtain a range measurement, two transceivers transmit and timestamp a sequence
of messages among themselves as shown between Robot 1 and Robot 2 in Figure 6.4. A
time instance corresponding to the ith message is denoted as Ti for the transmission time
and Ri for the reception time, while a subscript j denotes the time instance as timestamped
by Transceiver j. For example, T1

f0
is the timestamp corresponding to the first message

transmission as recorded by Transceiver f0. Note that the notation used in this chapter for
the UWB timestamps is different from previous chapters, in that transmission and reception
time instances are denoted using different letters. The protocol example shown between
Robot 1 and Robot 2 in Figure 6.4 is a modified version of the standard double-sided two-
way ranging (DS-TWR [80]) protocol as presented in Chapter 4, where the message shown
in red represents an “information message” used to broadcast the timestamps recorded by
Robot 1.

Throughout this chapter, 1 and 0 denote identity and zero matrices of appropriate di-
mension. When ambiguous, a subscript will indicate the dimension of these matrices.

6.2 Related Work

The majority of UWB-based localization relies on a set of pre-localized and synchronized
static transceivers, or anchors, to localize a mobile transceiver [14], [29], [81]. This typ-
ically relies on the anchors ranging with the mobile transceiver using standard ranging
protocols such as two-way ranging (TWR) or time-difference-of-arrival (TDoA) [21], [15,
Chapter 7.1.4]. More complicated ranging protocols have been proposed in [82]–[84] to allow
multiple anchors to passively listen-in on messages with the mobile transceiver to localize it.

Calibrating the clocks and location of anchors is challenging, and [44], [85] propose an
approach where anchors actively range with one another to synchronize and localize them-
selves. Meanwhile, the mobile transceiver passively listens to these signals to localize itself
using the anchors’ estimated clock states and positions. The work in [22], [86] extends this
by applying a Kalman filter (KF) to the synchronization and localization problem. In [87], a
localization cost function is proposed that is invariant to the anchors’ synchronization error.
Meanwhile, in [88], the synchronization approach is accurate to within a few microseconds,
whereas nanosecond-level accuracy is desired for localization with cm accuracy.

Overcoming the need for a fixed infrastructure of anchors, UWB has been used more
recently for teams of robots, as in Chapter 3 and in [55], [89], [90]. In [91], it is assumed that
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neighbouring robots know their poses and clock states, thus essentially behaving as mobile
anchors, allowing a mobile transceiver to localize itself. The use of robots with multiple
transceivers is motivated in Chapter 3, and in [19] a robot equipped with 4 transceivers
localizes a mobile transceiver relative to itself by having one of the 4 transceivers actively
range with the target and the other 3 passively listening.

In [92], [93], a passive-listening-based ranging protocol is proposed where the network is
divided into “parent robots” that actively range with one another and “child robots” that
passively listen-in on these measurements. This hierarchical constraint has the limitation
that parent robots cannot localize child robots and do not benefit from passive listening
measurements themselves when they are not involved in a ranging transaction. Additionally,
it is suggested that the child robots use the estimated position and clock states of the parent
states, which in filtering applications would lead to untracked cross-correlations that would
result in poor performance [5].

Furthermore, in filtering applications, the problem of communicating IMU measurements
to neighbours remains unaddressed. In [32], [33], scattering theory is used to send pre-
computed matrices between two robots rather than individual IMU measurements, in a
manner similar to the concept of preintegration [79], [94]. However, extending this to more
than two robots is challenging, particularly for preintegrated poses directly on SE2(3) [95],
[96].

The motive behind using SE2(3) state representation for relative pose estimation using
range measurements is due to this being inherently a nonlinear problem, which is commonly
addressed using particle filtering [60], [69] to handle non-ellipsoid-shaped distributions in
Cartesian coordinates, see Figure 2.4. This nonlinearity motivates the use of an on-manifold
EKF, such as an EKF with states represented directly on the SE2(3) manifold, which can
represent such non-ellipsoidal-shaped distributions using exponential coordinates [97].

6.3 Problem Formulation

Consider a scenario with n + 1 robots, as shown in Figure 6.3 for n = 3. Throughout
this chapter, the perspective of one robot is considered, denoted without loss of generality
Robot 0, as any of the n + 1 robots can be considered Robot 0. Neighbouring robots are
then referred to as Robot i, i ∈ {1, . . . , n}. Unlike Chapter 3, this chapter employs a
“robocentric” viewpoint of the relative-pose state estimation problem, where all states are
estimated relative to Robot 0 and are resolved in the body frame of that robot. The robots
are assumed to be rigid bodies, so any vector can be resolved in one of the following n + 2

reference frames:
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Robot 1

f1

s1

Robot 0

f0

s0

Robot 2

f2

s2

Robot 3

f3

s3

Active Transceiver

Passive Transceiver

Figure 6.3: An example of a ranging transaction, where Transceivers f1 and s2 are actively ranging with one
another and all other tags are passively listening.

• an (absolute) inertial frame denoted with a subscript a,

• Robot 0’s body frame denoted with a subscript 0, or

• neighbouring Robot i’s body frame denoted with a subscript i.

Each robot is equipped with an IMU at its center, consisting of a 3-axis gyroscope and
accelerometer, but no magnetometer. Given the use of accelerometers, the relative pose
estimation problem involves estimating the extended pose of each neighbouring robot relative
to Robot 0 in Robot 0’s body frame. The extended pose of Robot i is then defined as

T0i =




C0i vi0/a0 ri00
1

1


 ∈ SE2(3), i ∈ {1, . . . , n},

where time dependence is omitted from the notation for conciseness. The dependence on the
absolute frame a is also omitted from the notation T0i, with the convention that all extended
relative pose matrices in this chapter are of this form, where the vector corresponding to the
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second component in the first row is the derivative with respect to the absolute frame of the
vector corresponding to the third component, irrespective of the fact that these vectors are
resolved in frame 0.

Each robot is also equipped with 2 UWB transceivers for relative pose observability, as
motivated by Chapter 3. The first and second transceivers on Robot j are denoted fj and
sj, respectively, for j ∈ {0, . . . , n}. It is assumed that the vector coordinates rfjjj and rsjjj
between the transceivers and the IMU on Robot j are known, since they can be measured
by hand or more accurately using a motion capture system.

Denote the set of all transceivers as C = {f0, . . . , fn, s0, . . . , sn}. Consider the state of
the clock on Transceiver i ∈ C relative to real time. The evolution of the offset τi(t) of
clock i is modelled as (2.10). A robocentric viewpoint is also maintained for the clock states,
where offsets and skews of all clocks are estimated relative to the clock of Transceiver f0 on
Robot 0. The clock state of Transceiver s0 is then

cs0f0 =

[
τs0f0

γs0f0

]
,

[
τs0 − τf0
γs0 − γf0

]
∈ R2,

while the clock state of neighbouring Robot i is given by

X c
i0 , (cfif0 , csif0) ∈ R2 × R2, i ∈ {1, . . . , n},

where, as before, time dependence is omitted from the notation for conciseness. The full
relative state estimate of Robot i is then given by

X i0 , (T0i,X c
i0) ∈ SE2(3)× R2 × R2,

and the full state estimated by Robot 0 is

X , (cs0f0 ,X 10, . . . ,X n0) ∈ R2 ×
(
SE2(3)× R2 × R2

)n
.

Communication constraints limit Robot 0’s ability to estimate the state X , since to
prevent message collision only one pair of transceivers can communicate at a time. As the
number of transceivers increases, this can result in poor scalability due to longer wait times
between successive ranging measurements by a given pair. Additionally, the rate at which
transceivers communicate is typically lower than the rate at which IMU measurements are
recorded at neighbouring robots, thus Robot 0 cannot collect the IMU measurements from
all its neighbours without significant and impractical communication overhead. Therefore,
part of the problem is to design a scalable and practical ranging protocol that accomodates
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these communication constraints.
This chapter presents an on-manifold extended Kalman filter (EKF) for estimating the

state X using a novel ranging protocol that allows all robots to listen-in on neighbours while
awaiting their turn to communicate. It is known from Chapter 3 and [18] that the relative
pose states are observable from IMU and range measurements. In particular, the use of two
transceivers per robot ensures the observability of the relative poses while overcoming the
need for persistent excitation or constant relative motion between the robots [1]. This benefit
comes at the added cost of an additional transceiver. Nonetheless, UWB transceivers are
typically compact, lightweight, low-power, and inexpensive. In fact, the ones used in this
paper as shown in Figure 6.1, are 32 mm × 49 mm in size and weigh approximately 8 g each.
Meanwhile, assuming that the relative pose states are known since they are observable from
the IMU and range measurements alone, clock-offset measurements are sufficient to ensure
observability of the clock states [22].

To simplify the analysis in this paper, a complete communication graph with no packet
drops or failures between the robots is assumed, which reduces the scalability of the system.
Another factor impacting the scalability of the system is that the size of the stateX increases
with n; therefore, the number of robots that can be included in Robot 0’s EKF is limited
by Robot 0’s computational capabilities. This chapter addresses the scenario where n is
limited to a few robots. The complications associated with larger systems and incomplete
and dynamic communication graphs are discussed in Section 6.9.2.

6.4 Ranging Protocol

6.4.1 Overview

To address the communication constraints, a ranging protocol is proposed that involves
performing DS-TWR between all pairs of transceivers not on the same robot in sequence
while leveraging passive listening measurements at all other transceivers that are not actively
ranging. This is shown in Figure 6.4 for an example where Transceiver f1 is initiating a
TWR transaction with transceiver s2, and Transceivers f0 and s0 are passively listening.
In the proposed ranging protocol, any of the 2(n + 1) transceivers can initiate a TWR
transaction with any of the 2n transceivers not on the same robot. In this section, the
passive listening measurements are utilized in the relative-pose state estimator as a source
of ranging information between the different robots. This is possible due to the tightly-
coupled nature of the proposed estimator, which performs both clock synchronization and
relative pose estimation, meaning that clock-offset-corrupted passive listening measurements



CHAPTER 6. MULTI-ROBOT RELATIVE POSE ESTIMATION AND IMU PREINTEGRATION USING PAS-
SIVE UWB TRANSCEIVERS

80

Robot 1 Robot 2Robot 0

f0 s0 f1 s2

P
1,f0

P
2,f0

P
2,s0

T
2

R
1

T
1

P
1,s0

P
3,f0

P
3,s0

R
3

T
3

Active Passive Info

R
2

∆t21

∆t31

Figure 6.4: Proposed ranging protocol when Transceiver f1 is initiating a DS-TWR ranging transaction with
Transceiver s2. This chapter proposes that all other transceivers listen in on these messages. Shown here
are Transceivers f0 and s0 on Robot 0 passively listening, where the time instance corresponding to the ith
passive reception at Transceiver j is denoted Pi,j . Additionally, the intervals ∆t21 and ∆t31 are defined in
this chapter as shown in the figure.

can still be used to correct relative pose states, as cross-correlation information is available
between clock states and relative pose states at all times. There are multiple advantages
to passive listening in multi-robot pose estimation applications, including the availability of
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more measurements for state correction, providing the robots with information-broadcasting
ability, and allowing the implementation of simple MAC protocols.

The remainder of this section analyzes how the proposed ranging protocol can be used
in a CSRPE. The particular scenario under study is the one shown in Figures 6.3 and 6.4,
where transceivers on two neighbouring robots are the ones actively ranging. This is the
most general case, and scenarios where one of the transceivers on Robot 0 is actively ranging
involve similar but simpler derivations.

6.4.2 The Protocol

The ranging protocol proposed in this paper involves two transceivers actively ranging with
one another, while all other transceivers passively listen-in on the messages. The actively
ranging transceivers perform DS-TWR, as presented in Chapter 4. The example shown
in Figure 6.4 is an example where Transceiver f1 on Robot 1 initiates a transaction with
Transceiver s2 on Robot 2. Both robots have another transceiver, s1 and f2 for Robot 1 and
Robot 2, respectively, which then passively listen to all the messages transmitted between
the active transceivers. Additionally, all other robots have both their transceivers passively
listen to all the messages. For example, Robot 0 records passive listening measurements at
both Transceivers f0 and s0.

When the transceivers transmit and receive messages, whether actively or passively, the
transceivers timestamp the time of transmission or reception. Each robot needs access to
neighbouring robots’ timestamp measurements in order to be able to compute range mea-
surements from the transaction. For example, Robot 0 needs access to the timestamps
recorded by Transceivers f1 and s2. As shown in Figure 6.4, all timestamps are made avail-
able at Robot 0 at the end of the transaction by communicating all the timestamps recorded
at Robot 1 in a final information message shown in red, and the timestamps recorded at
Robot 2 are communicated in the last message transmitted by Robot 2. Note, however, that
passive listening measurements recorded by the other transceivers on Robot 1, Robot 2, and
any other neighbouring robots are not made available to Robot 0. The ranging protocol is
outlined in Algorithm 1 for the scenario shown in Figure 6.4.

When implementing the ranging protocol, a choice has to be made on the receiving
robot’s side (in this case, Robot 2) for the delays ∆t21 , T2 − R1 and ∆t31 , T3 − R1. These
user-defined parameters affect the frequency and noise of the measurements, and can be
chosen based on Chapter 5. Note that ∆t32 , ∆t31 −∆t21. Additionally, it will be assumed
throughout this paper that the distances between transceivers and the clock skews remain
constant during one ranging transaction. These are good approximations for most robotic
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Algorithm 1 The algorithm for the proposed ranging protocol when Transceiver f1 is
initiating the ranging transaction with Transceiver s2, and Transceivers f0, s0, s1, and f2 are
passively listening. Note that in this algorithm, the color blue is reserved for passive listening
measurements that are available to the reference robot Robot 0, and the color teal is reserved
for passive listening measurements at other robots that are not available to Robot 0.

Initiating Robot (Robot 1): The initiating robot has an active transceiver, f1, and
a passive transceiver, s1.

1: Transmit message to s2, and timestamp T1 in own clock.
2: Timestamp passive reception P1,s1 in own clock, for message transmitted by f1.
3: Timestamp reception R2 in own clock, for message transmitted by s2.

Timestamp passive reception P2,s1 in own clock, for message transmitted by s2.
4: Timestamp reception R3 in own clock and read R1, T2, T3, for message transmitted by s2.

Timestamp passive reception P3,s1 in own clock, for message transmitted by s2.
5: Transmit info message with T1, R2, R3 to s2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Target Robot (Robot 2): The target robot has an active transceiver, s2, and a passive
transceiver, f2.

1: Timestamp reception R1 in own clock, for message transmitted by f1.
Timestamp passive reception P1,f2 in own clock, for message transmitted by f1.

2: Transmit message to f1, and timestamp T2 in own clock.
3: Timestamp passive reception P2,f2 in own clock, for message transmitted by s2.
4: Set T3 = R1 + ∆t31, and wait until own clock is T3.
5: Transmit message with R1, T2, T3 to f1.
6: Timestamp passive reception P3,f2 in own clock, for message transmitted by s2.
7: Read T1, R2, R3 from info message transmitted by f1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Passive Robot (Robot 0): The passive robot has two passive transceivers, f0 and s0.

1: Timestamp passive reception P1,f0 in own clock, for message transmitted by f1.
Timestamp passive reception P1,s0 in own clock, for message transmitted by f1.

2: Timestamp passive reception P2,f0 in own clock, for message transmitted by s2.
Timestamp passive reception P2,s0 in own clock, for message transmitted by s2.

3: Timestamp passive reception P3,f0 in own clock and read R1, T2, T3, for message trans-
mitted by s2.
Timestamp passive reception P3,s0 in own clock, for message transmitted by s2.

4: Read T1, R2, R3 from info message transmitted by f1.

applications with typical clock rate variations [15, Chapter 7.1.4], [2].
The proposed ranging protocol has the following advantages. Given that all transceivers

passively listen to neighbouring robots communicating, this proposed protocol gives robots
the ability to broadcast information such as IMUmeasurements or estimated maps at a higher
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rate as any robot can obtain information communicated between two neighbouring robots.
This feature will be utilized for multi-robot preintegration in Section 6.6. Additionally, given
that each robot knows which robots are currently ranging, a simple MAC protocol can be
implemented to prevent message collision between multiple robots attempting to transmit
messages at the same time. To do so, a user-defined sequence of ranging pairs can be made
known to all robots. Each robot can then keep track of which pair in the sequence is currently
ranging, and initiate a TWR transaction to a specified transceiver when it is its turn to do
so. This MAC protocol is named here the common-list protocol.

6.4.3 Modelling Timestamp Measurements

The time instances shown in Figure 6.4 are only available to the robots as noisy timestamps
and in the clocks of the transceivers rather than in the global common time. Therefore,
the timestamp measurements are affected by clock offsets, clock skews, and white noise.
Modelling these effects, the timestamps available at Robot 1 (hereinafter, the initiating
robot) are of the form

T̃1
f1

= T1 + τf1(T
1) + η1

f1
, (6.1)

R̃2
f1

= T1 +
2

c
ds2f1 + ∆t21 + τf1(R

2) + η2
f1
, (6.2)

R̃3
f1

= T1 +
2

c
ds2f1 + ∆t31 + τf1(R

3) + η3
f1
, (6.3)

where (̃·) here denotes a measured value, ds2f1 is the distance between Transceivers s2 and
f1, and η`i is the random noise on the `th measurement of Transceiver i. All the random
noise variables on timestamps are assumed to be independent, zero-mean and with the same
variance σ2.

Similarly, the measurements available at Robot 2 (hereinafter, the target robot) are of
the form

R̃1
s2

= T1 +
1

c
ds2f1 + τs2(R

1) + η1
s2
, (6.4)

T̃2
s2

= T1 +
1

c
ds2f1 + ∆t21 + τs2(T

2) + η2
s2
, (6.5)

T̃3
s2

= T1 +
1

c
ds2f1 + ∆t31 + τs2(T

3) + η3
s2
. (6.6)

The timestamp measurements (6.1)-(6.6) correspond to the DS-TWR protocol in Section
4, from which ToF pseudomeasurements can be generated. Nonetheless, additional measure-
ments are available at Robot 0 (hereinafter, the passive robot) since its transceivers f0 and
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s0 also receive the messages exchanged between the two actively ranging robots. This yields
the following additional timestamp measurements at Robot 0,

P̃
1,i
i = T1 +

1

c
df1i + τi(P

1,i) + η1
i , (6.7)

P̃
2,i
i = T1 +

1

c
ds2f1 +

1

c
ds2i + ∆t21 + τi(P

2,i) + η2
i , (6.8)

P̃
3,i
i = T1 +

1

c
ds2f1 +

1

c
ds2i + ∆t31 + τi(P

3,i) + η3
i , (6.9)

where i ∈ {f0, s0}. Similarly, each neighbouring robot not involved in the ranging transaction
records its own passive listening measurements at its two transceivers. However, these are
not shared with other robots as this would require each robot to take its turn transmitting
a message.

In the case where Robot 0 is not involved in the ranging transaction and just listens in
passively, there are 12 available timestamp measurements at Robot 0, 6 sent by neighbouring
robots, and 3 passive-listening timestamps per transceiver on Robot 0. However, when
one of the transceivers f0 or s0 is involved in the ranging transaction, only 9 timestamp
measurements are available.

6.4.4 Pseudomeasurements as a Function of the State

To use the timestamp measurements (6.1)-(6.9) in the CSRPE, they must be rewritten as a
function of the state being estimated. In this subection, pseudomeasurements based on the
timestamps available at Robot 0 after one TWR transaction are formulated to get models
that are only a function of the states being estimated, as well as the known vectors between
the transceivers and the IMUs resolved in the robot’s body frame.

First, notice that the distance ds2f1 between transceivers in (6.1)-(6.6) can be written as
a function of the estimated states,

ds2f1 =
∥∥∥rs2f10

∥∥∥

=
∥∥∥rs20

0 − rf10
0

∥∥∥

=
∥∥∥(C02rs22

2 + r20
0 )− (C01rf11

1 + r10
0 )
∥∥∥

=
∥∥∥Π

(
T02r̃s22

2 − T01r̃f11
1

)∥∥∥ , (6.10)
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where ‖·‖ is the Euclidean norm, Π =
[

13 03×2

]
∈ R3×5, and

r̃ =
[

rT 0 1
]T
.

To design the EKF, the linearization of (6.10) with respect to the state is shown in Ap-
pendix C.

Therefore, pseudomeasurements can be formed that are only a function of the distance
between the transceivers, the clock states (relative to f0), and the white timestamping noise.
The first pseudomeasurement is the standard ToF measurement associated with DS-
TWR as discussed in Chapter 4, which from timestamps (6.1)-(6.6) can be written as

ytof =
1

2

(
(
R̃2
f1
− T̃1

f1

)
−

R̃3
f1
− R̃2

f1

T̃3
s2
− T̃2

s2

(
T̃2
s2
− R̃1

s2

)
)

≈ 1

c
ds2f1 +

1

2

(
η2
f1
− η1

f1
− η2

s2
+ η1

s2

)
. (6.11)

The relation (6.11) is obtained under the following approximations. First, clock skews γi are
assumed constant over the duration of the transaction, where the transaction is in the order
of a few milliseconds, so that during the transaction

τi(t
′)− τi(t) ≈ γi(t

′ − t),

for any time instances t, t′ and Transceiver i. Second, ∆t21, which like ∆t32 is in the order
of a few hundreds of microseconds, is much greater than d

c
, and since clock skews are also

small (in the order of a few parts-per-million [21]), then to first order γi(R2 − T1) ≈ γi∆t
21.

Third,
(1 + γf1)∆t

32 + η3
f1
− η2

f1

(1 + γs2)∆t
32 + η3

s2
− η2

s2

≈ (1 + γf1)

(1 + γs2)

because the timestamping noise, in the order of a few hundred picoseconds at most, is much
smaller than ∆t32. Finally,

(1 + γf1)

(1 + γs2)

(
η2
s2
− η1

s2

)
≈ η2

s2
− η1

s2
,

to first order, because the clock skews and timestamping noise are both small.
The second pseudomeasurement is a direct clock offset measurement between the
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initiating and target transceivers, which from timestamps (6.1)-(6.6) can be written as

yτ =
1

2

(
(
R̃2
f1

+ T̃1
f1

)
−

R̃3
f1
− R̃2

f1

T̃3
s2
− T̃2

s2

(
T̃2
s2
− R̃1

s2

)
− 2R̃1

s2

)

≈ τf1f0 − τs2f0 +
1

2

(
η2
f1

+ η1
f1
− η2

s2
− η1

s2

)
, (6.12)

using the fact that τf1 − τs2 = τf1f0 − τs2f0 . Here and in the following, clock offsets are
evaluated at time T1, which is omitted from the notation. This model is somewhat similar
to the measurement model proposed in [22], but involves an additional term to correct
the effect of the clock skew on the measured offset. In fact, the form of the first two
pseudomeasurements is chosen to cancel out the terms 1

2
(1 + γf1)∆t

21 and −1
2
(1 + γs2)∆t

21

by multiplying the latter with 1+γf1
1+γs2

.
The third pseudomeasurement is associated with the first passive-listening times-

tamp, which is a function of the distance between the passive robot and the initiating robot,
as well the clock offset between the two transceivers. Using timestamps (6.1) and (6.7) for
i ∈ {f0, s0}, and τf0f0 , 0, this is written as

yp,1
i = P̃

1,i
i − T̃1

f1
=

1

c
df1i + τif0 − τf1f0 + η1

i − η1
f1
. (6.13)

The fourth pseudomeasurement is similar to the third one, with an additional skew-
correction component to model the passage of time ∆t21 between the first and second
messages in two clocks with different clock rates. Using timestamps (6.5) and (6.8) for
i ∈ {f0, s0}, and γf0f0 , 0, this is modelled as

yp,2
i = P̃

2,i
i − T̃2

s2

=
1

c
ds2i + τif0 − τs2f0 + (γif0 − γs2f0)∆t21 + η2

i − η2
s2
. (6.14)

using the fact that γi− γs2 = γif0 − γs2f0 . The exact delay ∆t21 appearing in (6.14) is in fact
unknown, as delay values are enforced by the transceivers in their own clocks. Nonetheless,
to first order, the corresponding term can be replaced by

(γif0 − γs2f0)∆t21 ≈ (γif0 − γs2f0)(T̃2
s2
− R̃1

s2
).

Lastly, the fifth pseudomeasurement is similar to the fourth pseudomeasurement, but
modelling the evolution of the clocks over a longer time window ∆t31. Using timestamps
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(6.6) and (6.9) for i ∈ {f0, s0}, this is modelled as

yp,3
i = P̃

3,i
i − T̃3

s2

=
1

c
ds2i + τif0 − τs2f0 + (γif0 − γs2f0)∆t31 + η3

i − η3
s2
. (6.15)

As before, ∆t31 is unknown, but to first order

(γif0 − γs2f0)∆t31 ≈ (γif0 − γs2f0)(T̃3
s2
− R̃1

s2
).

Note the last three pseudomeasurements are per listening transceiver i, and therefore
there are a total of 8 pseudomeasurements available at Robot 0 if it is not involved in
the ranging transaction, or 5 pseudomeasurements if one of the transceivers on Robot 0 is
active. The additional pseudomeasurements available at the listening transceivers results
in a (1 + 3n)-fold increase in the total number of distinct measurements when considering
a centralized approach where passive listening measurements from all robots are available,
and a (1

2
+ 2n)-fold increase in the number of distinct measurements when considering the

perspective of an individual robot that does not have access to passive listening measurements
at other robots. For example, for 5 neighbouring robots, this results in a 16-fold and an
11.5-fold increase in the number of measurements, respectively. The former is purely due
to passive listening measurements, while the latter is due to passive listening measurements
as well as the ability to obtain direct ToF measurements between two neighbouring robots.
The proof of this claim is given in Appendix B.

6.4.5 Pseudomeasurements’ Covariance Matrix

Given that the pseudomeasurements are a function of the same measured timestamps, cross-
correlations between the pseudomeasurements exist and must be correctly modelled in the
filter. Computing the variance of the pseudomeasurements (6.11)-(6.15) is straightforward,
and can be summarized as

E
[
(ytof − ȳtof)2

]
= σ2,

E
[
(yτ − ȳτ )2

]
= σ2,

E
[
(yp,j
i − ȳp,j

i )2
]

= 2σ2, j ∈ {1, 2, 3},
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where an overbar denotes a noise-free value. Meanwhile, the cross-correlation between the
ToF and offset measurements can be computed as

E
[
(ytof − ȳtof)(yτ − ȳτ )

]
= 0

as the noise values are of alternating signs. Lastly, the cross-correlations between the passive
listening measurements and the ToF measurements can be shown to be

E
[
(yp,1
i − ȳp,1

i )(ytof − ȳtof)
]

=
1

2
σ2,

E
[
(yp,2
i − ȳp,2

i )(ytof − ȳtof)
]

=
1

2
σ2,

E
[
(yp,3
i − ȳp,3

i )(ytof − ȳtof)
]

= 0,

while the cross-correlations with offset measurements are the same but with an opposite sign
for the correlation with yp,2

i . Passive listening measurements of different transceivers are also
correlated. Stacking all the pseudomeasurements into one column matrix gives the random
measurement vector

y =
[
ytof yτ yp,1

f0
yp,2
f0

yp,3
f0

yp,1
s0

yp,2
s0

yp,3
s0

]T
, (6.16)

with mean ȳ and covariance matrix R, where

R =




σ212
1
2
σ2B 1

2
σ2B

1
2
σ2BT 2σ213 σ213

1
2
σ2BT σ213 2σ213


 ,

and

B =

[
1 1 0

1 −1 0

]
.

The measurement vector y and its covariance R are used in the correction step of an on-
manifold EKF, where they are fused with the process model derived in the next section.
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6.5 The Process Model

To derive the process model, a Lie group referred to here as DE2(3) (D stands for Delta)
with matrices of the form

U =




C v r
1 ∆t

1


 ∈ DE2(3) (6.17)

is introduced, where C ∈ SO(3), v, r ∈ R3, and ∆t ∈ R. The inverse of U in (6.17) is

U−1 =




CT −CTv −CT(r−∆tv)

1 −∆t

1


 ∈ DE2(3).

Meanwhile, the matrix representation of the adjoint operator satisfying

Exp(Ad(U)ξ) , U Exp(ξ)U−1, Exp(ξ) ∈ SE2(3)

is given by

Ad(U) =




C 0 0
v×C C 0

−(∆tv− r)×C −∆tC C


 ,

where, for v =
[
v1 v2 v3

]T
∈ R3,

v× =




0 −v3 v2

v3 0 −v1

−v2 v1 0


 .

Additionally, following the terminology in [71, Chapter 9], a time machine is a matrix M
of the form

M =




1
1 ∆t

1


 ∈ R5×5,
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where ∆t ∈ R. This allows writing U in (6.17) as the product of two matrices,

U =




1
1 ∆t

1




︸ ︷︷ ︸
M




C v r
1

1




︸ ︷︷ ︸
T∈SE2(3)

.

It can be shown that M is in itself an element of a Lie group closed under matrix multipli-
cation.

This section first extends the results in [71, Chapter 9] to address relative extended pose
states. The clock-state process model is then derived. These are then used alongside the
ranging protocol presented in Section 6.4 in the CSRPE.

6.5.1 Deriving the Extended-Pose Process Model

Using the absolute-pose kinematic model given in Section 2.5, the on-manifold relative-pose
kinematic model is first derived in continuous-time as a function of the IMU measurements.
The process model for the relative attitude between Robot 0 and Robot i is

Ċ0i = C0i

(
ωi0i
)×
, (6.18)

where ωi0i is the angular velocity of Robot i’s body frame relative to Robot 0’s body frame,
resolved in Robot i’s body frame. However, the gyroscopes on Robots 0 and i measure ω0a

0

and ωiai , respectively. Therefore, (6.18) is rewritten as

Ċ0i = C0i

(
ωiai − CT

0iω
0a
0

)×

= −C0i

(
CT

0iω
0a
0

)×
+ C0i

(
ωiai
)×

= −
(
ω0a

0

)×C0i + C0i

(
ωiai
)×
. (6.19)

Meanwhile, using the transport theorem from Section 2.5.2, the process model for the
relative velocity of Robot i relative to Robot 0 is

0 v̇−→
i0/a = −ω−→

0a × v−→
i0/a + a−→

iw/a − a−→
0w/a, (6.20)

where w is any point fixed to the reference frame a. Denoting the specific forces measured
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by the accelerometers as

α−→
0 , a−→

0w/a − g−→, α−→
i , a−→

iw/a − g−→,

where g−→ is the gravity vector, (6.20) can be written as

0 v̇−→
i0/a = −ω−→

0a × v−→
i0/a + α−→

i − α−→
0. (6.21)

Similarly, the transport theorem gives the following process model for the position of
Robot i relative to Robot 0

0 ṙ−→
i0 = −ω−→

0a × r−→
i0 + v−→

i0/a. (6.22)

Lastly, resolving (6.21) and (6.22) in the body frame of Robot 0 and writing these equa-
tions as a function of the accelerometer-measured quantities α0

0 and αii yields

0v̇i0/a0 = −
(
ω0a

0

)× vi0/a0 + C0iα
i
i −α0

0, (6.23)
0ṙi00 = −

(
ω0a

0

)× ri00 + vi0/a0 . (6.24)

Combining (6.19), (6.23), and (6.24), the extended relative-pose process model for Robot
i can be written compactly as

Ṫ0i =




Ċ0i
0v̇i0/a0

0ṙi00
0

0




= −




(ω0a
0 )
×
α0

0

1

0


T0i + T0i




(ωiai )
×
αii

1

0




, −Ũ0T0i + T0iŨi, (6.25)

with the matrices Ũ0 and Ũi containing the IMU measurements for Robot 0 and Robot i,
respectively.

6.5.2 Discrete-Time Extended-Pose Process Model

In order to discretize (6.25), the common assumption is made that accelerations and angular
velocities are constant between IMU measurements, which is justified by the fact that IMU
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measurements typically occur at a high frequency (∼100-1000 Hz). Consequently, since
(6.25) is a differential Sylvester equation, and setting the initial condition to be T0i,k at
time-step k, a closed-form solution exists of the form [98]

T0i,k+1 = exp(Ũ0,k∆t)
−1

︸ ︷︷ ︸
U−1
0,k

T0i,k exp(Ũi,k∆t)︸ ︷︷ ︸
Ui,k

, (6.26)

where ∆t is the time interval between the IMU measurements at time-steps k and k + 1.
Following a similar derivation as in [71, Chapter 9], expanding the matrix exponential is

shown in Appendix D to yield a closed-form matrix of the form

U0,k =




exp(Ω0,k) ∆tJl (Ω0,k)α
0
0,k

∆t2

2
N (Ω0,k)α

0
0,k

1 ∆t

1




where Ω0,k ,
(
ω0a

0,k

)×
∆t and Jl is the left Jacobian of SO(3). Both Jl and N are defined in

Appendix D. Note that U0,k is an element of the aforementioned Lie groupDE2(3). Similarly,
Ui,k ∈ DE2(3) is of the same form as U0,k with the inputs being that of neighbouring Robot i
instead.

6.5.3 Linearizing the Extended-Pose Process Model

To perform uncertainty propagation computations for the extended-pose states, the process
model is now linearized. Throughout this chapter, the state is perturbed on the left, as it
yields simpler Jacobians. Nonetheless, a similar derivation can be done by perturbing the
state on the right.

Perturbing (6.26) with respect to the state yields

Exp(δξ0i,k+1)T̄0i,k+1 = Ū−1
0,k Exp(δξ0i,k)T̄0i,kŪi,k

= Exp(Ad(Ū−1
0,k)δξ0i,k)Ū−1

0,kT̄0i,kŪi,k.

Cancelling out nominal terms and taking the Log(·) of both sides results in the linearized
model

δξ0i,k+1 = Ad(Ū−1
0,k)δξ0i,k. (6.27)

To perturb (6.26) with respect to the input noise, the aforementioned concept of time
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machines is used. The input matrix U0,k can be written as

U0,k = M




exp(Ω0,k) ∆tJl (Ω0,k)α
0
0,k

∆t2

2
N (Ω0,k)α

0
0,k

1

1




= M Exp







ω0a
0,k∆t

α0
0,k∆t

∆t2

2
Jl (Ω0,k)

−1 N (Ω0,k)α
0
0,k







= M Exp

(


∆t1
∆t1

∆t2

2
Jl (Ω0,k)

−1 N (Ω0,k)




︸ ︷︷ ︸
V0,k

[
ω0a

0,k

α0
0,k

]

︸ ︷︷ ︸
u0,k

)

, M Exp(V0,ku0,k), (6.28)

where u0,k ∈ R6 is Robot 0’s IMU measurements or input at time-step k. Taking the
perturbation of (6.28) with respect to the input yields

U0,k ≈M Exp(V̄0,k(ū0,k + δu0,k))

≈M Exp(V̄0,kū0,k) Exp(J l(−V̄0,kū0,k)V̄0,kδu0,k)

= Ū0,k Exp(J l(−V̄0,kū0,k)V̄0,kδu0,k)

, Ū0,k Exp(L0,kδu0,k) (6.29)

where input noise perturbations in V0,k are neglected as the term ∆t2

2
Jl (Ω0,k)

−1 N (Ω0,k) is
small when the measurements are obtained using a high-rate IMU, L0,k , J l(−V̄0,kū0,k)V̄0,k,
and J l(·) is the left Jacobian of SE2(3) [96, Eq. (94)]. Similarly,

Ui,k = M Exp(Vi,kui,k) ≈ Ūi,k Exp(Li,kδui,k). (6.30)

Therefore, left-perturbing the state process model (6.26) with respect to the input noise
yields

Exp(δξ0i,k+1)T̄0i,k+1 = Exp(−L0,kδu0,k)Ū−1
0,kT̄0i,kŪi,k Exp(Li,kδui,k)

= Exp(−L0,kδu0,k) Exp(Ad(T̄0i,k+1)Li,kδui,k)T̄0i,k+1,
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which can then be simplified to give

δξ0i,k+1 = −L0,kδu0,k + Ad(T̄0i,k+1)Li,kδui,k. (6.31)

It is worth mentioning that cross-correlations develop between relative pose states for all
neighbours, because the noisy IMU measurements of Robot 0 are used to propagate all the
relative pose states. These cross-correlations can be tracked using the models (6.27) and
(6.31).

6.5.4 Discrete-Time Clock-State Process Model

The state dynamics for every clock is modelled as in (2.10). Nonetheless, the clock states
relative to real-time are unknown and unobservable. Therefore, clocks are modelled relative
to clock f0, thus giving dynamics of the form

ċif0 = Acif0 +
[
−1 1

] [ wf0

wi

]
(6.32)

for i ∈ C\{f0}. Discretizing (6.32) yields [8, Chapter 4.7]

cif0,k+1 = Ad cif0,k + wif0,k, (6.33)

where

Ad = exp(A∆t) =

[
1 ∆t

1

]
,

wif0,k ∼ N
(
0,Qd

)
, and

Qd = 2

[
∆tQτ + 1

3
∆t3Qγ 1

2
∆t2Qγ

1
2
∆t2Qγ ∆tQγ

]
.

Since the same noise wf0 appears in (6.32) for all i ∈ C\{f0}, the process noise vectors wif0,k

in (6.33) are jointly Gaussian and correlated, and one can show that their cross-covariance
is

E
[
wif0,k wT

jf0,k

]
=

1

2
Qd, ∀i, j ∈ C\{f0}, i 6= j.



CHAPTER 6. MULTI-ROBOT RELATIVE POSE ESTIMATION AND IMU PREINTEGRATION USING PAS-
SIVE UWB TRANSCEIVERS

95

6.6 Relative Pose State Preintegration

6.6.1 Need for Preintegration

Robot 0

Robot 1

Robot 2

∆T2,k:k+2

Robot 0

Robot 1

Robot 2

∆T0,k:k+1

k k + 1 k + 2 k + 3 k + 4

∆T1,k:k+1

∆T2,k:k+3

∆T0,k+1:k+4 ∆T1,k+1:k+4

k + 3k + 3k + 2

∆T2,k:k+2

∆T0,k:k+2 ∆T1,k:k+3

(a) RMI communication without passive listening.

Robot 0

Robot 1

Robot 2

∆T2,k:k+2

Robot 0

Robot 1

Robot 2

∆T0,k:k+1

∆T1,k+1:k+3

k k + 1 k + 2 k + 3 k + 4

∆T1,k:k+1

∆T2,k+2:k+3

∆T0,k+2:k+4 ∆T1,k+3:k+4

k + 3k + 3k + 2

∆T2,k:k+2

∆T0,k+1:k+2 ∆T1,k+1:k+3

(b) RMI communication with passive listening, where passive listening messages are shown using the grey
arrows.

Figure 6.5: Communicated RMIs with and without passive listening over a window of 4 ranging transactions,
where ∆Ti,`:m is the RMI associated with the IMU measurements of Robot i from time-step ` to time-step
m− 1.

When considering Robot 0’s perspective, the estimated relative-pose state is updated us-
ing (6.26) and the corresponding error covariance matrix using (6.27) and (6.31). Therefore,
Robot 0 needs the IMU measurements of neighbouring robots at every time-step in order to
update its estimated state of its neighbours. This is limiting since robots cannot broadcast
their IMU measurements at the same rate as they are recorded due to the possibility of
message collision if multiple robots attempt to broadcast at the same time. Additionally,
to allow DS-TWR transactions to occur at the highest rate possible, the IMU information
should ideally be transmitted using the ranging messages presented in Section 6.4.

In this section, the concept of preintegration is proposed to compactly encode the IMU
measurements of a neighbouring Robot i over a window between two consecutive ranging
instances using one relative motion increment (RMI), which is then sent over when Robot
i ranges with one of its neighbours. However, as illustrated in Figure 6.5a, without passive
listening the RMIs of Robot i become available to Robot 0 only when Robot 0 and Robot i
communicate. Given that RMIs are computed iteratively as new IMU measurements arrive,
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each robot needs to keep track of one RMI per neighbour. For example, looking at Figure
6.5a at time-step k + 3, Robot 1 would be communicating the RMI of IMU measurements
in the window k to k + 3 to Robot 2, while also tracking a separate RMI for the window
starting at k + 1 to be sent to Robot 0 at time-step k + 4.

On the other hand, passive listening over UWB lets two actively ranging robots broadcast
their RMIs to all other robots, as shown in Figure 6.5b. This has the advantage that IMU
information of neighbours becomes available faster at all robots, and the robots computing
RMIs only need to track one RMI at all times since all neighbours are up-to-date with the
most recently communicated RMI.

6.6.2 Relative Motion Increments

Consider the case where Robot i is an active robot only at non-adjacent time-steps ` and m.
From (6.26), the relative pose state at time-step m can be computed from the relative pose
state at time-step ` as

T0i,m =

(
m−1∏

k=`

U0,k

)−1

T0i,`

m−1∏

k=`

Ui,k. (6.34)

The inputs of Robot 0 are available at Robot 0 as soon as the measurements occur, therefore
the first term of (6.26) can be computed directly at every time-step. On the other hand, the
inputs of Robot i from time-step ` to m − 1 will only be available when the robot actively
shares it at time-step m. Rather than sharing the individual IMU measurements, Robot i
can simply send

∆Ti,`:m =
m−1∏

k=`

Ui,k ∈ DE2(3),

which is an RMI of the inputs of Robot i in the window ` to m. The process model
representing time-propagation between non-adjacent time-steps can then be rewritten as

T0i,m =

(
m−1∏

k=`

U0,k

)−1

T0i,`∆Ti,`:m. (6.35)

This is a feature of the process model (6.34) being reliant on the inputs of Robot i in a
separable way, meaning that the inputs of Robot i can simply be post-multiplied in (6.34).
Robot i computes its RMI iteratively, starting with ∆Ti,`:` = 1, and updating it when a new
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input measurement arrives as

∆Ti,`:k+1 = ∆Ti,`:kUi,k. (6.36)

In order to linearize the RMI to be used in an EKF, a perturbation of the form

∆Ti,`:m = ∆T̄i,`:m Exp(δwi,`:m)

is defined, where δwi,`m ∈ R9 is some unknown noise parameter associated with the RMI,
which is a consequence of the noise associated with every input measurement. Despite
∆Ti,`:m being an element of DE2(3), the above Exp is the exponential operator in SE2(3).
Additionally, a right-perturbation is chosen to match the perturbation on U derived in (6.30),
which simplifies the subsequent derivation, but a left-perturbation could also have been
chosen.
Perturbing (6.36) with respect to the RMI itself then yields

∆T̄i,`:k+1 Exp(δwi,`:k+1) = ∆T̄i,`:k Exp(δwi,`:k)Ūi,k

= ∆T̄i,`:kŪi,k Exp(Ad(Ū−1
i,k )δwi,`:k),

which can be simplified to give

δwi,`:k+1 = Ad(Ū−1
i,k )δwi,`:k. (6.37)

Meanwhile, perturbing the RMI relative to the input noise using (6.30) yields

∆T̄i,`:k+1 Exp(δwi,`:k+1) = ∆T̄i,`:kŪi,k Exp(Li,kδui,k),

which can also be simplified to give

δwi,`:k+1 = Li,kδui,k. (6.38)

6.6.3 An Asynchronous-Input Filter

Taking advantage of the separability of the process model in the neighbour’s input measure-
ments, an asynchronous-input filter can be designed. The key idea here is to use two process
models, one of the form

T 0i,k+1 = U−1
0,kT0i,k, T 0i,k+1 ∈ DE2(3) (6.39)
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at ` < k < m− 1 when there is no input information from Robot i, and another of the form

T0i,m = U−1
0,m−1T 0i,m−1∆Ti,`:m (6.40)

when propagating from k = m − 1 to m as Robot i communicates the RMI ∆Ti,`:m. Note
that T denotes an intermediate state estimate that is not an element of SE2(3). Only when
the IMU measurements of the neighbouring robot are incorporated does the estimated state
restore its original SE2(3) form.

Given that (6.39) is of the same form as (6.26) with Ui,k = 1, linearization is straightfor-
ward and follows Section 6.5.3,

δξ0i,k+1 = Ad(Ū−1
0,k)δξ0i,k − L0,kδu0,k. (6.41)

Similarly, (6.40) is of the same form as (6.26) with Ui,k = ∆Ti,`:m, so the linearization with
respect to the state is the same as (6.41), giving

δξ0i,m = Ad(Ū−1
0,m−1)δξ0i,m−1 − L0,m−1δu0,m−1 + Ad(T̄0i,m)δwi,`:m. (6.42)

A summary of the proposed on-manifold EKF is shown in Algorithm 2.
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Algorithm 2 Algorithm for one time-step of the proposed on-manifold EKF running on
Robot 0.

The following is the pseudocode for Robot 0’s EKF at time-step k. Let `p denote the last time
Robot p ∈ {0, . . . , n} communicated with one of its neighbours. Therefore, at time-step k − 1,
Robot 0 has the RMI ∆T0,l0:k−1, an intermediate estimate of neighbouring robots’ relative poses,
T̂ 0q,k−1, q ∈ {1, . . . , n}, as well as an estimate of the relative clock states. Robot 0 additionally
gets an IMU measurement, allowing it to compute U0,k−1. The EKF is then as follows.

1: Propagate RMI using ∆T0,l0:k = ∆T0,l0:k−1U0,k−1 and its covariance using (6.37), (6.38).
2: if ranging with neighbour i then
3: Communicate ∆T0,l0:k and its covariance.
4: Generate 5 pseudomeasurements using (6.11)-(6.15).
5: Propagate the relative pose state estimates in time using

Ť 0p,k = U−1
0,k−1T̂ 0p,k−1, p ∈ {1, . . . , n}, p 6= i,

Ť0i,k = U−1
0,k−1T̂ 0i,k−1∆Ti,`i:k,

and the clock state estimates using Section 6.5.4.
6: Propagate the state-error covariances using (6.41), (6.42) and Section 6.5.4.
7: Do on-manifold EKF correction step using pseudomeasurements to get T̂ 0p,k & T̂0i,k.
8: Initiate a new RMI ∆T0,k:k = 1 with covariance 0.
9: else if neighbours i and j are ranging then
10: Generate 8 pseudomeasurements using (6.11)-(6.15).
11: Propagate the relative pose state estimates in time using

Ť 0p,k = U−1
0,k−1T̂ 0p,k−1, p ∈ {1, . . . , n}, p 6= i, j,

Ť0i,k = U−1
0,k−1T̂ 0i,k−1∆Ti,`i:k,

Ť0j,k = U−1
0,k−1T̂ 0j,k−1∆Tj,`j :k,

and the clock state estimates using Section 6.5.4.
12: Propagate the state-error covariances using (6.41), (6.42) and Section 6.5.4.
13: Do on-manifold EKF correction step using pseudomeasurements to get T̂ 0p,k, T̂0i,k, & T̂0j,k.
14: else if no one is ranging then
15: Propagate the relative pose state estimates in time using

Ť 0p,k = U−1
0,k−1T̂ 0p,k−1, p ∈ {1, . . . , n},

and the clock state estimates using Section 6.5.4.
16: Propagate the state-error covariances using (6.41) and Section 6.5.4.
17: end if
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6.6.4 Equivalence to the No Communication Constraint Case

In the absence of communication constraint, each robot would have access to all of its neigh-
bours’ IMU measurements at all times. As explained in Section 6.6.1, this is not possible, so
that preintegration is needed. It is shown in (6.35) that the state can be propagated using
RMIs in a manner equivalent to the case with no communication constraint. In this subsec-
tion, it is shown that computing the uncertainty propagation for the state is also equivalent
in both cases, despite the Jacobians used being different. This is in fact a consequence of
the structure of the Jacobians when perturbing the state from the left.

No Communication Constraints

When there are no communication constraints and IMU measurements of neighbours are
available at all times, the models shown in Section 6.5 can be used to propagate the state.
The covariance of the state is propagated using (6.27) and (6.31), which for two nonadjacent
timestamps ` and m would be written as

δξ0i,m = Ad(∆T0,`:m)−1δξ0i,` −
m−1∑

k=`

Ad(∆T0,k+1:m)−1L0,kδu0,k

+
m−1∑

k=`

Ad(∆T−1
0,k+1:mT̄0i,k+1)Li,kδui,k. (6.43)

With Preintegration

First, the uncertainty of the RMI can be computed using (6.37) and (6.38) as

δwi,`:m =
m−1∑

k=`

Ad(∆Ti,k+1:m)−1Li,kδui,k.

Note that the RMI gets communicated at time-step m, so from time-step ` to m− 1 the
state propagation occurs only with the IMU measurements of Robot 0 as shown in (6.39).
The uncertainty propagation from timestamp ` to m − 1 then follows as per (6.41), which
can be written as

δξ0i,m−1 = Ad(∆T0,`:m−1)−1δξ0i,` −
m−2∑

k=`

Ad(∆T0,k+1:m−1)−1L0,kδu0,k.

Meanwhile, propagating the uncertainty from timestamp m−1 to m using the RMI as shown
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in (6.40) then follows as per (6.42) to give

δξ0i,m = Ad(∆T0,`:m)−1δξ0i,` −
m−1∑

k=`

Ad(∆T0,k+1:m)−1L0,kδu0,k

+ Ad(∆T−1
0,`:mT̄0i,`∆Ti,`:m)δwi,`:m

= Ad(∆T0,`:m)−1δξ0i,` −
m−1∑

k=`

Ad(∆T0,k+1:m)−1L0,kδu0,k

+
m−1∑

k=`

Ad(∆T−1
0,k+1:m∆T−1

0,`:k+1T̄0i,`∆Ti,`:k+1)Li,kδui,k,

which, using (6.35), simplifies to be exactly equal to (6.43).

6.6.5 Communication Requirements

The proposed multi-robot preintegration approach provides an alternative efficient way of
communicating odometry information as compared to communicating the individual IMU
measurements. When sending IMU measurements, no covariance information is required
as the covariance matrix is typically a fixed value that can be assumed common among
all robots if they all share the same kind of IMU. Meanwhile, when sending an RMI, the
components of a corresponding 9 × 9 positive-definite symmetric matrix representing its
computed uncertainty must also be sent, as this is not constant but rather a function of the
individual inputs.

Each IMU measurement consists of 6 single-precision floats, 3 for the gyroscope and 3 for
the accelerometer readings, for a total of 24 bytes. Meanwhile, each RMI can be represented
using 10 single-precision floats and the corresponding covariance matrix using the upper
triangular part of the 9 × 9 matrix, which requires communicating an additional 45 single-
precision floats. Therefore, sending one RMI and its covariance matrix requires over 220
bytes of information. Therefore, unless an RMI replaces more than 9 IMU measurements,
it is sometimes more efficient to communicate the raw IMU measurements. Nonetheless,
using the proposed multi-robot preintegration framework has the following advantages (in
addition to the discussion in Section 6.6.1).

• It overcomes the need for variable amount of communication, as the RMI and its
covariance matrix are of fixed length but a varying number of IMU readings might
be accumulated in between two instances of a robot ranging. This consequently eases
implementation and provides a more reliable system.
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Table 6.1: Simulation parameters based on the ICM-20689 IMU and the DWM1000 UWB transceiver.

Specification Value
Accelerometer std. dev. [m/s2] 0.023
Gyroscope std. dev. [rad/s] 0.0066

IMU rate [Hz] 250
UWB timestamping std. dev. [ns] 0.33

UWB rate [Hz] 125
Clock offset PSD [ns2/Hz] 0.4
Clock skew PSD [ppb2/Hz] 640

• It provides robustness to loss of communication, as a robot re-establishing communi-
cation with its neighbours after a few seconds would not be able to send over all the
accumulated IMU information.

• It reduces the amount of processing required at neighbours, as the input matrices Ui,k

are pre-multiplied at Robot i on behalf of all its neighbours.

• It overcomes the need to know the noise distribution of the neighbours’ IMUs, which
would be useful if not all robots have the same IMU.

• It allows easy implementation with IMU-bias estimators and approaches that dynam-
ically tune the covariance of the IMU measurements, without needing to send the bias
estimates or the tuned covariances over UWB.

Additionally, UWB protocols by default allow 128 bytes of information to be sent per
message transmission [77], for a total of 256 bytes per transceiver in each TWR instance.
Given that each transceiver only needs to send 2 bytes of frame-control data per signal (thus
4 bytes of frame-control data in total) [77] and a total of 3 single-precision timestamps (thus
12 bytes of timestamps), there is enough room for the 220 bytes required to send an RMI.
Note that if more information is required, some modules such as DWM1000 allow up to 1024
bytes of data per message transmission [7].

6.7 Simulation Results

To evaluate the benefits of using passive listening on the estimation accuracy of relative pose
states, the clock dynamics and quadcopter kinematics have been simulated. The clocks’ evo-
lution is modelled relative to a “global time” using the simulating computer’s own clock, while
the absolute-state quadcopter kinematics are simulated relative to some inertial frame. Noisy
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IMU and timestamp measurements are then modelled and fed into the CSRPE algorithm to
estimate the relative clock and pose states.
To evaluate the proposed approach, 3 datasets are simulated.

1. S1: A single run with 4 quadcopters,

2. S2: 100 Monte-Carlo trials with 3 to 7 quadcopters, and

3. S3: 500 Monte-Carlo trials with 4 quadcopters.

The trajectory of the quadcopters in the case of a system with 3 quadcopters is shown in
Figure 6.2, and the simulation parameters are shown in Table 6.1. The simulated trajectories
are 60 seconds long and each quadcopter covers a distance between 60 m and 218 m, with
a maximum speed of 5.5 m/s. The maximum and mean angular velocities are 1 rad/s and
0.3 rad/s, respectively. Following a periodic sequence, each pair of transceivers performs in
turn a ranging transaction, except for pairs of transceivers on the same robot. The proposed
algorithm is then tested on each dataset and compared to two scenarios.

1. Centralized: A hypothetical centralized scenario where each robot has access to range
measurements between neighbours in the absence of passive listening. This differs
from the proposed framework in that the pseudomeasurements associated with passive
listening do not exist, and that this is practically impossible without passive listening
or some other communication media. This serves as the benchmark on what is the
best achievable estimator using existing methods.

2. No passive listening: A decentralized approach but in the absence of passive lis-
tening, meaning that robots do not have access to the passive listening pseudomea-
surements nor range measurements between neighbours. This serves as the benchmark
on what is currently a practically implementable solution without requiring a central
processor or additional communication media.

The evaluation is based on the following three criteria.

1. Accuracy: The accuracy of the proposed algorithm as compared to the case with
no passive listening is quantified using error plots and the root-mean-squared-error
(RMSE), which for the pose estimation error ek = Log(T̂kT−1

k ) is computed as

RMSE ,

√√√√ 1

N + 1

N∑

k=0

eTk ek

for N + 1 time-steps.
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2. Precision: The precision of the proposed algorithm is quantified using ±3σ-bound re-
gions about the estimate, which represent a 99.73% confidence bound under a Gaussian
distribution assumption.

3. Consistency: A consistent estimator is an estimator with a modelled precision that
reflects the true precision of its estimate. In more specific terms, a consistent estimator
outputs a covariance matrix on its estimate that is representative of the true uncertainty
of that estimate, as formally defined in Section 2.4.1. Consistency is evaluated using
the normalized-estimation-error-squared (NEES) test [50, Section 5.4]. Consistency
and the NEES test are discussed in further detail in Section 2.4.1.

6.7.1 Estimation Accuracy and Precision
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(b) With passive listening.

Figure 6.6: Error plots and ±3σ bounds (shaded region) for Robot 0’s estimate of Robot 1’s relative pose
for Simulation S1, comparing the centralized and proposed approaches.
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Figure 6.7: Error plots and ±3σ bounds (shaded region) for Robot 0’s estimate of Robot 1’s relative pose for
Simulation S1, comparing the decentralized no-passive-listening and proposed approaches. The right figure
is a zoomed-out version of Figure 6.6b.

Table 6.2: The average RMSE (aRMSE) for all trials of Robot 0’s estimate of neighbouring robots’ relative
pose for Simulation S2. The percentage change is Proposed−Comparison

Comparison , where the Comparison is either
Centralized or No Passive.

Position aRMSE averaged over all
Robots [m]

Percentage change [%]

Number of
Robots

Centralized No Passive Proposed Centralized No Passive

3 0.277 0.486 0.263 -5.05 -45.88

4 0.231 0.574 0.222 -3.90 -61.32

5 0.220 0.662 0.211 -4.09 -68.13

6 0.220 0.737 0.199 -9.55 -73.00

7 0.186 0.917 0.165 -11.29 -82.01
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Figure 6.8: Error plots and ±3σ bounds (shaded region) for Robot 0’s estimate of the clock states of
Transceivers s0, f1, and s1 relative to Transceiver f0 for Simulation S1. These plots are zoomed in to
a window of 4 seconds to show clearly the cycle of expanding and contracting uncertainty in the clock
estimates as the transceiver alternates between active ranging and passive listening.
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Figure 6.9: The error norm for Robot 0’s estimate of Robot 1’s relative pose for Simulation S1.
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Figure 6.10: Violin and box plots showing the distribution of the position and attitude RMSEs for Simulation
S3. The envelope shows the relative frequency of RMSE values. The box plot shows the median as a white
dot, while the first and third quartile of the data are represented using the lower and upper bound of the
thick black bar, respectively.
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Figure 6.11: 500-trial NEES plot for the proposed estimator on Simulation S3.
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The error plots for the relative pose estimate of Robot 1 relative to Robot 0 in Simulation S1
are shown in Figures 6.6 and 6.7. Passive listening reduces the positioning RMSE by 29.4%
from 0.204 m to 0.144 m as compared to the centralized approach, and by 55.96% from
0.327 m to 0.144 m when compared to the case of no passive listening. Additionally, passive
listening produces at almost every time-step a position error with smaller norm, as shown
in Figure 6.9. The proposed estimator is also significantly more confident in its estimate, as
shown by the covariance bounds in Figures 6.6 and 6.7.

This improvement in localization performance can be attributed to more measurements
and stronger cross-correlation between the different states when passive listening measure-
ments are available. As shown in Figure 6.8, passive listening results in the clock state of a
transceiver not drifting significantly in between instances where this transceiver is ranging.
This brings down the clock offset RMSE of Transceiver f1 for example by 59.31% from 1.155
ns to 0.470 ns when compared to the case with no passive listening.

The improvement in performance can also be seen as the number of robots is increased,
as shown in Table 6.2 for the Simulation S2. Because only one pair of transceivers can com-
municate at a time, in the absence of passive listening the rate at which each transceiver
participates in a ranging transaction decreases with the number of transceivers, and as a
result the overall localization performance degrades. With passive listening on the other
hand, adding robots does not result in longer periods without measurements and the mea-
surement rate per robot remains the same. In fact, it turns out that adding robots in the
presence of passive listening produces better performance due to spatial variations in the
range-measurement sources [99]. This is also the case for the centralized estimator.

To provide further insight into the contribution of passive listening measurements on
the behaviour of the estimator, the distribution of the RMSEs of the position and attitude
estimates of all robots in Simulation S3 are visualized in Figure 6.10. Not only does the
proposed approach significantly outperform the no passive listening approach, but it matches
the centralized approach, which is typically the best possible solution under an assumption of
the availability of a central processor. In fact, the proposed framework slightly outperforms
the standard centralized approach due to the availability of additional pseudomeasurements.

6.7.2 Consistency

Given that the estimator is an EKF, consistency cannot be guaranteed due to linearization
and discretization errors. Nonetheless, the proposed on-manifold framework can characterize
banana-shaped error distributions that result from range measurements as shown in Figure
2.4 more efficiently. Consequently, the error distribution appears to be well-characterized by
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the estimator as shown in Figures 6.7 and 6.8, as the error trajectory typically lies within
the ±3σ bounds.

A better evaluation of the consistency of the estimator is a NEES test, which is performed
over the 500 trials of Simulation S3 and is shown in Figure 6.11. During the first few
seconds when the quadcopters are taking off from the ground, their geometry and low speeds
result in a weakly-observable system [18], which results in overconfidence of the estimator
as linearization-based filters can correct in unobservable directions [100], [101]. Nonetheless,
the estimator then converges towards consistency, although it is never perfectly consistent
due to linearization and discretization errors, which is a feature of EKFs. This can be solved
by slightly inflating the associated covariance matrices used in the filter.

6.8 Experimental Results

The proposed approach is tested on multiple experimental trials. The ranging protocol
discussed in Section 6.4 is implemented in C on custom-made boards fitted with DWM1000
UWB transceivers [7]. Two boards are then fitted to Uvify IFO-S quadcopters approximately
45 cm apart. The experimental set-up is shown in Figure 6.1. Three of these quadcopters are
then used for the experimental results shown in this section, with multiple approximately-
75-second-long trajectories similar to the one shown in Figure 6.12 in a roughly 5 m × 5 m
area. The quadcopters in the experimental trajectories each cover a distance between 20 m
and 35 m, with a maximum speed of 3.75 m/s. The maximum and mean angular velocities
are 2.12 rad/s and 0.3 rad/s, respectively. In order to analyze the error in the pose estimates
of the robots, a 12-camera Vicon motion-capture system is used to record the ground-truth
pose of each quadcopter.

To enable the 6 transceivers to take turn ranging with one another, the common-list
protocol discussed in Section 6.4 is implemented using robot operating system (ROS). This
allows each robot to range with its neighbours at a rate of 90 Hz, and collect passive listening
measurements at a rate of 150 Hz. These UWB measurements are corrected for antenna
delays and power-induced biases using Chapter 4, before fusing them with the onboard
IMU and height measurements in the proposed EKF. An ICM-20689 IMU is used with
characteristics similar to the simulated ones given in Table 6.1, and the height measurements
are obtained from a downward-facing camera. The height measurement error is assumed
Gaussian with 5 cm of standard deviation. To reject outliers in the range and passive-
listening measurements, the normalized-innovation-squared (NIS) test is used in the filter
[50, Section 5.4].

Note that before flight, all transceivers are allowed to range with one another to initial-
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Figure 6.12: (Top) 3 quadcopters in the experimental space. (Bottom Left) The experimental trajectory
for Trial 1, where each colour represents the trajectory of a different quadcopter and the grid represents a
roughly 5 m × 5 m area. (Bottom Right) The experimental trajectory for Trial 2.

ize the relative clock offset states using the second pseudomeasurement from Section 4.2,
alongside a pseudomeasurement yγ = R̃3−R̃2

T̃3−T̃2 − 1 ≈ γf1s2 that is not used in the filter. Mean-
while, the IMU biases are initialized using the motion capture system and are then assumed
constant throughout the experiment, which is sufficient for the duration of the experiments
presented here. Addressing IMU biases for longer experiments is presented in Section 6.9.1.

The pose-error plots for one of the trials are shown in Figure 6.13 with and without fusing
passive listening measurements, and the RMSE comparison for 4 different trials with varying
motion are shown in Table 6.3. Even though both scenarios result in error trajectories that
fall within the error bounds, it is clear that with the additional passive listening measure-
ments available to the robot at 150 Hz, the relative position estimates in particular become
significantly less uncertain. Additionally, these error plots correspond to the first row in
Table 6.3, showing that the improvement in the confidence of the estimator is additionally
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(b) No passive listening.
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(c) With passive listening.

Figure 6.13: Error plots and ±3σ bounds (shaded region) for Robot 0’s estimate of Robot 1’s relative pose
for experimental trial 1.
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accompanied with a 12.56% and 21.97% reduction in the RMSE as compared to the central-
ized and no passive listening position RMSE, respectively. This reduction in RMSE goes up
to 23.28% and 48.20%, respectively, for one of the runs when passive listening measurements
are utilized.

Table 6.3: The RMSE of Robot 0’s estimate of neighbouring robots’ relative pose for multiple experimental
trials. The percentage change is Proposed−Comparison

Comparison , where the Comparison is either Centralized or No
Passive.

Position RMSE averaged over all
Robots [m] Percentage change [%]

Centralized No Passive Proposed Centralized No Passive
Trial 1 0.390 0.437 0.341 -12.56 -21.97
Trial 2 0.614 0.954 0.576 -6.19 -39.62
Trial 3 0.462 0.593 0.443 -4.11 -25.30
Trial 4 0.580 0.859 0.445 -23.28 -48.20

6.9 Further Practical Considerations

6.9.1 IMU Biases

The IMU measurements typically suffer from time-varying biases, which must be estimated
as part of the state for long-term navigation. It can be shown that, when modelling the
evolution of biases as a random walk, some form of the IMU biases can be incorporated
into the process model while still maintaining the differential Sylvester equation form (6.25).
To do so, each Robot i estimates its own gyroscope bias βgyr,i

i in its own body frame,
and uses this estimate to correct the IMU measurements and inflating the covariance when
constructing the RMI. Additionally, each robot estimates a relative accelerometer bias to
every neighbour in the robot’s own body frame, which does not affect the computed RMI.
For example, Robot 0’s estimate of Robot i’s relative accelerometer bias is defined as

βacc,0i
0 , βacc,0

0 − C0iβ
acc,i
i ,

where βacc,i
i is Robot i’s accelerometer bias. The interested reader can refer to Appendix E for

derivation of the pose and bias process models, corresponding linearization, preintegration,
and simulation and experimental results.
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6.9.2 Incomplete and Dynamic Communication Graphs

The proposed framework has been evaluated under the assumptions of a full communication
graph, no packet drop, and no communication failures. Nonetheless, these are all real-world
problems that must be addressed before implementing the proposed framework. This is
beyond the scope of this paper; nonetheless, a brief discussion regarding these issues is
provided in this section.

The ranging protocol and the proposed estimator do not require a full communication
graph and the lack of communication failures. However, the common-list MAC protocol does.
The common-list MAC protocol is a very simple approach made possible only due to passive
listening, and is ideal for small teams of robots that will always be within communication
range with one another, thus allowing a full communication graph. Whenever a ranging
transaction between a pair of transceivers fails, it is reattempted multiple times until a
timeout is triggered, after which the ranging pair and all other robots who have not heard a
message for the duration of the timeout move onto the next entry in the list. The protocol
can handle a robot’s communication failure by having each robot eliminate an element in
the list when it fails more than κ times, where κ is a user-defined threshold.

When extending to larger teams, it is not possible to assume that all robots are within
communication range of one another, thus invalidating the full-communication-graph as-
sumption. Additionally, robots might fall in and out of range with one another over time,
thus necessitating an incomplete dynamic communication graph model. In such scenarios,
the common-list protocol is no longer simple, as robots need to know what other robots out
of communication range are doing. Therefore, such systems may benefit from other MAC
protocols such as token passing, which is still possible with the proposed ranging protocol
and estimator as they are independent of the choice of the MAC protocol. The benefits of
passive listening thus still stand, not just due to additional measurements, but because it
also allows each robot to maintain a list of neighbours within communication range.

Another implication of incomplete graphs is that each robot only estimates relative poses
for the subset of robots that lie within its communication range. This is useful as it reduces
the dimensionality of the onboard estimator, since each robot only estimates the relative
states of m < n neighbouring robots. However, having dynamic graphs due to robots falling
in and out of the communication range of the robot mean that the robots must initialize the
states of neighbours when they appear and marginalize out the states of neighbours that have
not been within the communication range for an extended period of time. The initialization
can potentially be done by listening to a window of measurements from the new neighbour
and formulating a least-squares problem.
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6.10 Conclusion and Future Work

In this chapter, the problem of relative extended pose estimation has been addressed for
a team of robots, each equipped with UWB transceivers. To allow the implementation of
scalable algorithms, a novel ranging protocol is proposed that allows neighbouring robots to
passively listen-in on the measurements without any underlying assumption on the hierarchy
of the communication. This is then utilized to implement a simple MAC protocol and an
efficient means for sharing preintegrated IMU information, such that each robot can have
access to its neighbours’ IMU measurements to fuse in their own estimator, in a decentralized
manner. The proposed estimator fuses the preintegrated IMU information with the UWB
measurements in a filter that estimates both the clock states of the transceivers and the
relative poses of the robots, without any reliance on magnetometers. The relative poses and
the preintegration are formulated directly on SE2(3) to compactly represent the state while
utilizing the nice mathematical properties of on-manifold state estimation. This is then all
evaluated in simulation using different numbers of robots and Monte-Carlo trials, and in
experiments using multiple trials of 3 Uvify IFO-S quadcopters, each equipped with 2 UWB
transceivers. This required the implementation of the passive listening ranging protocol on
the custom-made UWB transceivers. The proposed framework is then shown to improve
the localization performance significantly when compared to the case of no passive listening
measurements.

This chapter can be extended to address complications that arise in wireless communi-
cations, such as packet drop. When a packet drop occurs, neighbours miss an RMI, which is
required to propagate their estimates forward, and therefore this must be addressed in a real-
world application, potentially by providing a means for robots to request a missed RMI from
their neighbours. Future work will additionally consider more efficient scheduling schemes
where only a subset of the transceivers range with one another in pairs while the remaining
transceivers are always passively listening. Other potential extensions of this chapter include
addressing dynamic graphs and incomplete graphs, where not all transceivers can range with
one another. Although more scalable than the simple framework in Chapter 3, the size of the
team is still limited under the proposed framework in this chapter as the dimensionality of
the state each robots estimates grows with the size of the team. To address this, a potential
extension of this chapter for larger teams would be to have each robot only estimate the
relative states of m < n neighbouring robots.

Another limitation of this chapter is the lack of collaboration between robots. Given
the proposed framework, different robots are estimating similar states, and by sharing these
state estimates, each robot could fuse their neighbours’ state estimates in the robot’s own
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state estimator to potentially achieve better performance. Nonetheless, care must be given
to the fact that under such an approach, cross-correlations develop between the estimators of
different robots, and not properly modelling these cross-correlations can lead to inconsistent
results, as will be shown in the next chapter. Filters feeding into other estimators is referred
to as “loosely-coupled filtering” or “cascaded filtering”, and deriving a general cascaded-
filtering framework will be the emphasis of the next chapter.



Chapter 7

Cascaded Filtering Using the Sigma
Point Transformation

Summary

It is often convenient to separate a state estimation task into smaller “local” tasks, where
each local estimator estimates a subset of the overall system state. This is particularly
prevalent in multi-robot systems, such as the framework in the previous chapter, where each
robot might be estimating the relative poses of a few but not necessarily all robots in the
team. However, neglecting cross-covariance terms between state estimates can result in over-
confident estimates, which can ultimately degrade the accuracy of the estimator. Common
cascaded filtering techniques focus on the problem of modelling cross-covariances when the
local estimators share a common state vector. This chapter introduces a novel cascaded and
decentralized filtering approach that approximates the cross-covariances when the local es-
timators consider distinct state vectors. The proposed estimator is validated in simulations
and in experiments on a three-dimensional pose estimation problem. The proposed approach
is compared to a naive cascaded filtering approach that neglects cross-covariance terms, a
sigma point-based Covariance Intersection filter, and a full-state centralized filter. In both
simulations and experiments, the proposed filter outperforms the naive and the Covariance
Intersection filters, while performing comparatively to the centralized full-state filter.

7.1 Introduction

State estimation is an integral part of technologies that use measured data to make deci-
sions. For complex systems, augmenting all the required states into one monolithic state

116
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estimator can become laborious, inconvenient, or even infeasible due to computational or
bandwidth limitations. Therefore, the ability to split the state estimation task into many
different estimators is desirable [102]–[104]. For example, multi-robot systems would benefit
from each robot having a local estimator, and large complex systems would ideally have a set
of interconnected and specialized estimators, also known as cascaded estimators. Such mod-
ularity allows the independent design, analysis, tuning, debugging, and testing of each state
estimator, in addition to providing architectural clarity. More efficient computing capability
is also possible as smaller state vectors can be considered in a parallel framework.

To be able to use cascaded filtering approaches, the problem of modelling the cross-
covariance between the estimates of the different filters must be addressed [36], [105]–[107].
Consider an attitude and heading reference system (AHRS) providing an attitude estimate
to a position estimator, where the AHRS is the feeding filter and the position estimator is
the receiving filter, as depicted in Figure 7.1. Any error in the AHRS results in an error in
the position estimator, because sensors such as an accelerometer rely on attitude information
when used for position estimation. Therefore, the estimation error of the attitude estimate
and the position estimate are correlated. Assuming the attitude estimation error is uncorre-
lated with the position estimation error is equivalent to neglecting the fact that the attitude
information is not entirely new, thus resulting in an overconfident estimate [34], [108]. In
this chapter, a state estimator is said to be consistent if its calculated error covariance does
not underestimate the true error covariance, which is defined formally as (2.36) based on
[36]. The approach of neglecting cross-covariances is common [102]–[104], [109], but can lead
to divergence of the state estimate as a consequence of the filter inconsistency [36], [105],
[106].

To accommodate cross-covariances, a master filter is proposed in [106], [107] named the
Federated filter, that takes as input the output of all the local, sensor-specific filters, and
fuses the estimates using a least squares algorithm. This is extended in [110] to nonlinear
systems, by designing the master filter to be an unscented Kalman filter (UKF) [43, Sec-
tion 5.6]. A more recent modification of the Federated filter is an optimal sample-based
fusion algorithm discussed in [111]. Another popular fusion algorithm is Covariance Inter-
section (CI), introduced in [36], where a convex combination of the means and covariances
of different estimates of the same unknown produces a consistent fused mean and covari-
ance. This involves the selection of weighing parameters, and in [112], the optimal choice of
weights is addressed in relation to state estimation of dynamical systems. A major limitation
of all the discussed fusion algorithms is the focus on scenarios where the local filters share
a set of common states. In [37], a method for computing pose estimates for a decentralized
multi-robot system is presented. However, it is assumed that relative pose measurements
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Figure 7.1: A block diagram of the architecture of a cascaded filter at time-step k. The estimator of x2 is
independent from the estimator of x1, while the estimator of x1 uses x̂2

k−1 and x̂2
k as a measurement.

between the robots are available to reconstruct a common shared state. Lastly, in [40], two
approaches are introduced, one based on the CI method and another that hinges on solving
a linear matrix inequality problem.

The presentation of a probabilistic approximation of the propagated cross-covariance
terms when the feeding and receiving filters do not estimate the same exact set of states
is a novel contribution of this chapter. In particular, a novel cascaded and decentralized
state estimation approach that approximates the cross-covariance terms using a sigma point
transformation is introduced. The proposed approximation is general to any loosely-coupled
system of estimators, not just multi-robot systems. Another contribution of this chapter is
demonstrating improved performance and consistency in simulation and experiments when
compared to both an estimator that neglects cross-covariances and a sigma point-based
Covariance Intersection (SPCI) estimator. Rather than addressing complex multi-robot sys-
tems, the simulation and experiments consider the more general problem of pose estimation
but in a decoupled and decentralized manner.

The remainder of this chapter is organized as follows. The cascaded filtering problem is
formulated in Section 7.2, where a probabilistic analysis of the approximate prior and pos-
terior distributions of the receiving filter is also given. The proposed algorithm is presented
in Section 7.3, and is then evaluated in simulations in Section 7.4 and in experiments in
Section 7.5.
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7.1.1 Notation

In this chapter, x ∼ N (µ,Σ) is used to denote a Gaussian random variable x with mean µ
and covariance matrix Σ. The notation (̌·) and (̂·) denotes the predicted and measurement-
corrected state estimates, respectively. The superscripts (·)i are indices, not exponents.
Lastly, Σab is used to denote the cross-covariance matrix between vectors a and b, and the
following notation is used for special cross-covariance matrices,

P̌ik , Σx̌ik x̌ik
, P̂ik , Σx̂ik x̂ik

, P̌1,2
p,q , Σx̌1px̂2q , P̂1,2

p,q , Σx̂1px̂2q .

7.2 Cascaded Filtering

Consider two discrete-time processes evolving through

x1
k = f1

(
x1
k−1, x

2
k−1,w

1
k−1

)
, (7.1)

x2
k = f2

(
x2
k−1,w

2
k−1

)
, (7.2)

where x1
k ∈ Rn1 and x2

k ∈ Rn2 are distinct state vectors, and wi
k−1 ∼ N

(
0,Qi

k−1

)
, wi

k−1 ∈ R`i

represents the process noise associated with the evolution of xik. Additionally, consider two
measurement signals modelled as

y1
k = g1

(
x1
k, x

2
k,ν

1
k

)
, (7.3)

y2
k = g2

(
x2
k,ν

2
k

)
, (7.4)

where y1
k ∈ Rm1 and y2

k ∈ Rm2 are distinct measurement vectors, and νik ∼ N
(
0,Ri

k−1

)
∈ Rhi

represents the measurement noise associated with yik. All process and measurement noise
are assumed to be mutually independent.

In the process models (7.1) and (7.2), no inputs are considered to simplify the derivation
of the proposed framework. However, this can be extended to systems with known inputs,
since inputs in the receiving filter are dealt with in the standard way, and the approximation
to be discussed in Section 7.3.3 still holds when the feeding filter has inputs.

The standard, centralized, full-state filtering approach involves designing a filter with
the augmented state vector xk = [ (x1

k)
T (x2

k)
T ]T ∈ Rn1+n2 , using knowledge of (7.1)-(7.4).

Meanwhile, the cascaded filtering approach separates this problem into two filters, as shown
in Figure 7.1. The feeding filter outputs an approximate a posteriori distribution of

x2
k

∣∣I2
k ∼ N

(
x̂2
k, P̂

2
k

)
, (7.5)
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where I ik = {x̌i0, yi0:k} is an “information” set containing a prior and measurements, a|b denotes
a random variable a conditioned on b, x̌2

0 ∈ Rn2 is the initial prediction of x2
k, x̂2

k ∈ Rn2 is
its estimate at time-step k based on (7.2) and (7.4), and P̂2

k ∈ Rn2×n2 is the associated
covariance matrix. The receiving filter uses this output alongside (7.1) and (7.3) to estimate
the a posteriori distribution of

x1
k

∣∣x̌1
0, y

1
0:k, x̌

2
0, y

2
0:k ≡ x1

k|I1
k , I2

k (7.6)

without access to I2
k . Naive cascaded filtering [102]–[104], [109] considers the estimate x̂2

k to
be a measurement in the receiving filter. This breaks a requirement for consistency of the
Kalman filter and its descendants, which is the conditional independence of the measurement
from the state and measurement histories [43, Property 4.2].

7.2.1 Receiving Filter Approximate Probability Distributions

When the a posteriori distribution of (7.5) is known, the goal is to find a consistent estimator
of (7.6) without access to the feeding filter’s process model (7.2), measurement model (7.4),
or corresponding inputs and measurements. Such a solution allows the design of an x1

estimator with minimal knowledge of the inner workings of the x2 estimator.
The propagation of x1

k is dependent on x2
k−1, and mutual independence cannot be assumed.

The conditional joint distribution of x1
k and x2

k−1 is therefore assumed to be

[
x1
k

x2
k−1

] ∣∣∣ I1
k−1, I2

k−1 ∼ N
([

x̌1
k

x̂2
k−1

]
,

[
P̌1
k P̌1,2

k,k−1(
P̌1,2
k,k−1

)T P̂2
k−1

])
, (7.7)

where x̌1
k = f1

(
x̂1
k−1, x̂2

k−1, 0
)
. This block partitioning follows from an assumption that the

conditional joint distribution is Gaussian. Using [43, Lemma A.2], (7.7) gives

x1
k|I1

k−1, I2
k−1, x

2
k−1 ∼ N

(
x̌1
k + P̌1,2

k,k−1

(
P̂2
k−1

)−1(x2
k−1 − x̂2

k−1

)
,

P̌1
k − P̌1,2

k,k−1

(
P̂2
k−1

)−1(P̌1,2
k,k−1

)T)
. (7.8)

and since I2
k−1 and x2

k−1 are available only through x̂2
k−1

(
I2
k−1

)
and P̂2

k−1

(
I2
k−1

)
in the receiving

filter, x2
k−1 in particular is replaced in (7.8) with x̂2

k−1 to obtain

x1
k|I1

k−1, x̂
2
k−1, P̂

2
k−1 ∼ N

(
x̌1
k, P̌

1
k − P̌1,2

k,k−1

(
P̂2
k−1

)−1(P̌1,2
k,k−1

)T)
. (7.9)

In (7.9), P̂2
k−1 is known and P̌1

k can be obtained using common filtering techniques. However,
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P̌1,2
k,k−1 is unknown and is required to consistently update the estimate of x1

k.
Similarly, an approximation of the distribution of (7.6) is derived in Appendix F yielding

the correction step equations

x̂1
k = x̌1

k + K1
k

(
y1
k − y̌1

k

)
−K1,2

k K2
k

(
y1
k − y̌1

k

)
, (7.10)

P̂1
k = P̌1

k −K1
kΣ

T
x̌1k y̌1k
−K1,2

k

((
P̌1,2
k,k

)T −K2
kΣ

T
x̌1k y̌1k

)
, (7.11)

P̂1,2
k,k = P̌1,2

k,k −K1
kΣ

T
x̂2k y̌1k

, (7.12)

where y̌1
k = g1 (x̌1

k, x̂2
k, 0) is the predicted measurement, and

K1
k = Σx̌1k y̌1k

Σ−1
y̌1k y̌1k

, K2
k = Σx̂2k y̌1k

Σ−1
y̌1k y̌1k

, (7.13)

K1,2
k =

(
P̌1,2
k,k −K1

kΣ
T
x2ky1k

)(
P̂2
k −K2

kΣ
T
x2ky1k

)−1

. (7.14)

The form of the update equation for the cross-covariance matrix P̂1,2
k,k is from the joint dis-

tribution of x1 and x2, given in the second step of Appendix F. As with the prediction
step, naive cascaded filtering techniques neglect the cross-covariance components Σx̂2k y̌1k

and
P̌1,2
k,k, which appear in (7.10)-(7.14). Note that (7.10) and (7.11) are similar to the standard

Kalman filter, except that this new form of the receiving filter also corrects the feeding filter’s
state x2 locally before correcting the state x1. The updated state of the feeding filter is never
communicated back to the feeding filter, resulting in a loss of performance as compared to a
full estimator.

7.3 Proposed Cascaded Receiving Filter

The proposed framework requires passing Gaussian distributions through nonlinear process
and measurement models, which is a well-documented problem with a plethora of possible
solutions. In this chapter, the sigma point transformation from Section 2.1.2 is used as it
is a concise, general approach that is suitable for handling nonlinearities. Another possible
solution is a linearization-based one, which is further discussed in Appendix H.

In the prediction step, P̂1,2
k−1,k−1 is used to generate sigma points, which are then prop-

agated forward in time to approximate P̌1,2
k,k−1. The exact change in the cross-covariance

matrix going from P̌1,2
k,k−1 to P̌1,2

k,k will be derived in Section 7.3.3, and an approximation is
then proposed. In the correction step, P̌1,2

k,k is then used to generate sigma points, which
allows computing P̂1,2

k,k.
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7.3.1 Prediction Step

For prediction, the goal is to propagate the estimate x̂1
k−1 forward in time to get a predicted

state x̌1
k. To do so, the process model (7.1) and the output of the feeding estimator, x̂2

k−1 and
P̂2
k−1, are used. Initially, P̂1,2

0,0 is set to be the zero matrix, unless there is prior knowledge of
a correlation between the initial estimates of the local estimators.

The state vectors x1
k−1 and x2

k−1 and the process noise w1
k−1 are augmented into a vector

v, with

v̂k−1 =




x̂1
k−1

x̂2
k−1

0


 , (7.15)

P̂vk−1
=




P̂1
k−1 P̂1,2

k−1,k−1 0(
P̂1,2
k−1,k−1

)T P̂2
k−1 0

0 0 Q1
k−1


 . (7.16)

Let L , dim (v̂k−1), and LLT , P̂vk−1
. Using the spherical cubature rule [43], define the 2L

sigma points s to be

sik−1 , v̂k−1 +
√
L coli(L), si+Lk−1 , v̂k−1 −

√
L coli(L).

By unstacking each sigma point into

sik−1 =
[ (

x̂1
k−1,i

)T (
x̂2
k−1,i

)T (
w1
k−1,i

)T ]T
, (7.17)

the sigma points are propagated through (7.1),

x̌1
k,i = f1

(
x̂1
k−1,i, x̂

2
k−1,i,w

1
k−1,i

)
. (7.18)

Hence, the statistics of the propagated sigma points are

x̌1
k =

1

2L

2L∑

i=1

x̌1
k,i, P̌1

k =
1

2L

2L∑

i=1

(
x̌1
k,i − x̌1

k

) (
x̌1
k,i − x̌1

k

)T
,

P̌1,2
k,k−1 =

1

2L

2L∑

i=1

(
x̌1
k,i − x̌1

k

) (
x̂2
k−1,i − x̂2

k−1

)T
. (7.19)
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7.3.2 Correction Step

For the correction step, the goal is to correct the predicted state x̌1
k using the measurement

y1
k, to obtain x̂1

k. As y1
k is a function of x2

k, the output of the feeding estimator x̂2
k and

P̂2
k is required. As before, the state vectors x1

k and x2
k and the measurement noise ν1

k are
augmented into a vector u, with

ûk =




x̌1
k

x̂2
k

0


 , P̂uk =




P̌1
k P̌1,2

k,k 0(
P̌1,2
k,k

)T P̂2
k 0

0 0 R1
k


 . (7.20)

The problem of finding P̌1,2
k,k in (7.20) from (7.19) is addressed in Section 7.3.3. Let M ,

dim (ûk), and MMT , P̂uk . Consequently, using the spherical cubature rule, define the 2M

sigma points p to be

pik , ûk +
√
M coli(M), pi+Lk , ûk −

√
M coli(M).

By unstacking each sigma point into

pik =
[ (

x̌1
k,i

)T (
x̂2
k,i

)T (
ν1
k,i

)T ]T
, (7.21)

the nonlinear transformation of the sigma points as per the measurement model is

y̌1
k,i = g1

(
x̌1
k,i, x̂

2
k,i,ν

1
k,i

)
. (7.22)

Hence, the statistics of the propagated sigma points are

y̌1
k =

1

2M

2M∑

i=1

y̌1
k,i, (7.23)

Σx̌1k y̌1k
=

1

2M

2M∑

i=1

(
x̌1
k,i − x̌1

k

) (
y̌1
k,i − y̌1

k

)T
, (7.24)

Σx̂2k y̌1k
=

1

2M

2M∑

i=1

(
x̂2
k,i − x̂2

k

) (
y̌1
k,i − y̌1

k

)T
, (7.25)

Σy̌1k y̌1k
=

1

2M

2M∑

i=1

(
y̌1
k,i − y̌1

k

) (
y̌1
k,i − y̌1

k

)T
. (7.26)

The filter equations given in (7.10)-(7.14) can then be used to obtain the approximated dis-
tribution of the corrected state x̂1

k and its cross-covariance matrix with the state estimate x̂2
k.
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7.3.3 Approximating the Effect of the Feeding Filter on the Cross-

Covariance

The cross-covariance matrix P̌1,2
k,k−1 is approximated using sigma points in the prediction

step. However, P̌1,2
k,k is needed to generate the sigma points for the correction step. If

knowledge of the process and measurement models of the feeding filter is available, P̌1,2
k,k−1

can be propagated to P̌1,2
k,k analytically. To elucidate this, consider the linear system

x1
k = A1

k−1x1
k−1 + B1

k−1x2
k−1 + w1

k−1, (7.27)

x2
k = A2

k−1x2
k−1 + w2

k−1, (7.28)

y1
k = C1

kx1
k + D1

k−1x2
k + ν1

k, y2
k = C2

kx
2
k + ν2

k, (7.29)

where the state vectors and noise parameters follow the same notation as in (7.1)-(7.4).
Moreover, consider for the moment that each of the process and measurement models in
(7.27)-(7.29) are known. Let G2

k ∈ Rn2×m2 denote the Kalman gain of the estimator of x2
k as

per Section 2.4, then

P̌1,2
k,k = E

[(
x1
k − x̌1

k

) (
x2
k − x̂2

k

)T ∣∣ I1
k−1, I2

k

]

= E
[(

x1
k − x̌1

k

)(
A2
k−1x2

k−1 + w2
k−1 − A2

k−1x̂2
k−1

−G2
kC2

k

(
A2
k−1x2

k−1 + w2
k−1

)
−G2

kν
2
k

+ G2
kC2

kA
2
k−1x̂2

k−1

)T∣∣ I1
k−1, I2

k

]

= E
[ (

x1
k − x̌1

k

) (
x2
k−1 − x̂2

k−1

)T ∣∣ I1
k−1, I2

k

]
×
(
A2
k−1 −G2

kC
2
kA2

k−1

)T

= P̌1,2
k,k−1Ψk, (7.30)

where the assumptions E
[

(x1
k − x̌1

k)
(
w2
k−1

)T ∣∣ I1
k−1, I2

k

]
= 0 and E

[
(x1
k − x̌1

k) (ν2
k)

T ∣∣ I1
k−1, I2

k

]
=

0 have been used, and Ψk ,
(
(1−G2

kC2
k) A2

k−1

)T. Since, however, the estimator of x1 does
not have access to the process and measurement models of the feeding filter, computing
(7.30) exactly is not possible. If cooperation from the feeding filter is at all possible, the
most accurate solution is for the feeding filter to share the matrix Ψk at every time-step,
in addition to the estimated distribution of x2. When this is not possible, however, an
alternative is to approximate Ψk. Using (2.33), Ψk can be rewritten as

Ψk =
(

P̂2
k

(
P̌2
k

)−1 A2
k−1

)T
. (7.31)
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Once the feeding filter reaches a steady state, P̂2
k

(
P̌2
k

)−1 ≈ 1, yielding the approximation
Ψ̂k =

(
A2
k−1

)T. Hence, with knowledge of what Ψ̂ should be if access to the process model
(7.2) is available, the user can form an educated guess of the Jacobian A2. Since the state
vector x2 of the feeding filter is known, the user can reconstruct an approximate (i.e., lower
fidelity) process model for the states of the feeding filter, and use the Jacobian of this
approximate process model as an approximation of the true Jacobian of the process model
(7.2) used in the feeding filter.

An implementation nuisance with over-estimating P̌1,2
k,k using this approximation is that

P̂uk in (7.20) can become indefinite. Therefore, at every iteration, the definiteness of P̂uk

must be checked, and the cross-covariances are to be deflated using a scalar parameter until
the definiteness test passes.

7.4 Simulation Results

The main criteria for evaluating the proposed cascaded filter is its consistency, which will be
done using the normalized estimation error squared (NEES) test on Monte Carlo runs. As
discussed in Section 2.4.1, the NEES test involves computing a chi-squared statistic ε̄ using
the error trajectory and corresponding covariance of multiple trials. If the statistic is below a
certain threshold, the hypothesis that the estimator is consistent cannot be rejected with 95%
confidence [50]. The ±3σ bound test is also considered, and the root-mean-squared-error
(RMSE) is computed to evaluate the performance of the estimators.

7.4.1 Linear System

To elucidate the benefits of the proposed approach, consider first a toy problem with two
discrete-time linear time-invariant processes evolving through

x1
k = x1

k−1 − x2
k−1 + w1

k−1, w1
k−1 ∼ N

(
0, q1

)
, (7.32)

x2
k = x2

k−1 + w2
k−1, w2

k−1 ∼ N
(
0, q2

)
, (7.33)

where x1
k ∈ R and x2

k ∈ R are distinct states. Additionally, consider two measurements
modelled as

y1
k = x1

k + x2
k + ν1

k , ν1
k ∼ N

(
0, r1

)
, (7.34)

y2
k = x2

k + ν2
k , ν2

k ∼ N
(
0, r2

)
, (7.35)

where y1
k ∈ R and y2

k ∈ R are distinct measurements.
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As before, assume at every time-step k the estimates x̂1
k−1, x̂2

k−1, x̂2
k, the covariances P̂ 1

k−1,
P̂ 2
k−1, P̂ 2

k , and the cross-covariance P̂ 1,2
k−1,k−1 are known, and the goal is to find the estimate

x̂1
k and its corresponding covariance P̂ 1

k using the known values, the process model (7.32),
and the measurement model (7.34). Using (7.33), Ψ is set to equal 1, with the definiteness
check in place as per Section 7.3.3.

Deriving the update equations for x1 yields

x̌1
k = x̂1

k−1 − x̂2
k−1, x̂1

k = x̌1
k +K(y1

k − y̌1
k),

P̌ 1
k = P̂ 1

k−1 + 2P̂ 1,2
k−1,k−1 + P̂ 2

k−1 + q1,

P̂ 1
k = (1−K)2P̌ 1

k − 2(1−K)KP̌ 1,2
k,k +K2(P̂ 2

k + r1),

where the optimal gain K is

K =
(
P̌ 1
k + P̌ 1,2

k,k

) (
P̌ 1
k + 2P̌ 1,2

k,k + P̂ 2
k + r1

)−1

. (7.36)

The proposed cascaded filter approximates the cross-covariance terms P̂ 1,2
k−1,k−1 and P̌ 1,2

k,k , and
is evaluated against the naive approach in [109], to reiterate the importance of modelling
cross-covariances.

To evaluate consistency, 1000 Monte Carlo trials with varying initial conditions and noise
realizations are performed. A naive estimator that assumes the estimate x̂2

k is independent
from the estimate x̂1

k thinks it has access to more information than it actually does, resulting
in an overconfident estimator. Therefore, the naive estimator fails both the±3σ test shown in
Figure 7.2 and the NEES test in Figure 7.3, while the proposed estimator that accommodates
for cross-covariances passes both consistency checks.

The full estimator is clearly the best performer as it can perfectly calculate the cross-
covariances and update all states using all measurements. The average RMSE of the proposed
framework is 45% worse than the full estimator, while the naive estimator is 90% worse.
Therefore, this highlights the importance of addressing cross-covariances to prevent the reuse
of old information in the filter.

7.4.2 Nonlinear System

Consider a rigid body navigating 3D space with an onboard inertial measurement unit (IMU)
and an ultra-wideband (UWB) tag, where the position of the UWB tag p relative to the IMU
z resolved in the body frame Fb is known, and is denoted rpzb ∈ R3. Additionally, let there be
a ρ ∈ N>3 number of UWB anchors scattered within ranging distance of the UWB tag, thus
providing a noisy position measurement of rpkwa ∈ R3, which is the position of the UWB tag
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Figure 7.2: Single run of the naive and proposed estimators on the lin-
ear system. Shaded regions correspond to ±3σ bounds. Red, blue, and
green correspond to naive, proposed, and full estimators, respectively.
After k = 1000, the ±3σ bound of the naive and full estimator almost
fully overlap.
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Figure 7.3: The NEES test for 1000 Monte Carlo trials on the linear
system, showing the consistency evaluation of the cascaded estimators.

relative to some arbitrary point w at time-step k, in the absolute frame Fa. The simulation
parameters of the system are shown in Table 7.1, and the set-up in Figure 7.4.

Using the gyroscope, the magnetometer, and the accelerometer, an AHRS is designed
using the invariant extended Kalman filter (IEKF) [47] framework, where accelerometer
aiding follows a thresholding rule similar to the one considered in [8]. The output of the
AHRS is a direction cosine matrix (DCM) estimate Ĉab ∈ SO(3) that gives the relation
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Figure 7.4: The prototype used in simulation and for collection of
experimental data. The UWB receiver is used to obtain position mea-
surements from a system of UWB anchors.

Table 7.1: Simulation parame-
ters for the nonlinear system.

Specification Value
Accel. (m/s2) 0.10
Gyro. (rad/s) 0.0032
Mag. (µF) 2.00

Pos. meas. (m) 0.22
Initial pos. (m) 0.45
Initial vel. (m/s) 0.45St

d.
D
ev
ia
ti
on

Initial att. (rad) 0.22
IMU (Hz) 100

R
at
e

Pos. meas. (Hz) 50

ra = Ĉabrb̂, where ra and rb̂ are the same arbitrary vector resolved in Fa, the absolute
frame, and Fb̂, the estimated body frame, respectively. The corresponding covariance matrix
P̂AHRS ∈ R3×3 is also made available by the AHRS.

The position estimator has access to the position measurement y ∈ R3 and the accelerom-
eter measurement ub ∈ R3 resolved in the body frame Fb. The state vector of the position
estimator is

x(t) =

[
rzwa (t)

vzwa (t)

]
, (7.37)

where rzwa (t) ∈ R3 is the position of the IMU relative to the arbitrary point w resolved in
Fa, and vzwa (t) ∈ R3 is the velocity of the IMU relative to the point w with respect to Fa,
resolved in Fa. The corresponding process model is

ṙzwa (t) = vzwa (t), (7.38)

v̇zwa (t) = Cab(t) (ub(t)− wb(t)) + ga, (7.39)

where wb ∈ R3 denotes white Gaussian process noise, and ga ∈ R3 is the gravitational
acceleration vector resolved in Fa. The discrete-time measurement model is

yk = rzkwa + Cabkrpkzb + νak , (7.40)

where νa ∈ R3 denotes white Gaussian measurement noise. This set-up has inputs in both
feeding and receiving filters.

Note that due to the presence of a moment-arm between the IMU and the position
sensor, and since the accelerometer measurements are obtained in the body frame Fb, cross-
covariances develop between the states of the AHRS and the position estimator. Through
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knowledge of (7.38)-(7.40), rpzb , and the output of the AHRS, the goal is to design a consistent
position estimator. Four approaches are considered. They are

1. an AHRS and a naive sigma point Kalman filter, where cross-covariances are neglected,

2. an AHRS and the proposed sigma point-based filter, where Ψ̂ is the identity matrix
as per Section 7.3.3,

3. an AHRS and a sigma point-based Covariance Intersection (SPCI) filter, and

4. a full sigma point Kalman filter that augments the state vector x(t) with the attitude
states Cab(t).

The SPCI filter used is a sigma point extension of [40], and is designed in a similar way
to the proposed framework. The main difference is that instead of approximating the cross-
covariances to compute (7.16) and (7.20), the estimated covariance matrices P̌1, P̂1, and P̂2

are inflated as per the CI approach, and the cross-covariances are assumed to be zero. This
involves tuning an additional scalar parameter. More details on this approach are given in
Appendix G.

For the full sigma point Kalman filter, the geodesic L2-mean discussed in [113] is used
for computing means and covariances on SO(3), which are required for sigma point trans-
formations with attitude states. The results of the full sigma point Kalman filter are used
as the baseline best possible performance, but in practice would be computationally heavy,
inflexible, and even impossible for larger systems.

The computational overhead of the proposed framework is not significantly different from
a naive SPKF or the SPCI filter, as all the considered cascaded estimators use sigma point
transformations and a similar set of equations. Additionally, a more computationally efficient
linearization-based approach is possible as shown in Appendix H.

To evaluate the 4 estimators, 500 Monte Carlo trials are performed, each 60 seconds long
with varying initial conditions and noise realizations. A summary of the position RMSEs
is given in Figure 7.5 and Table 7.2. The proposed estimator clearly outperforms both the
SPCI and naive estimators, even though all 3 estimators share the same AHRS. As expected,
the proposed cascaded filter also passes the consistency test, as shown in Figure 7.6.

The proposed framework provides a 35.9% worse position estimate than the full estimator
even though the provided attitude estimates are 61.1% worse. The worse attitude estimates
are due to the UWB measurements correcting the attitude states in the full estimator, but
not in cascaded architectures as discussed in Section 7.2. However, the loss of performance is
compensated by the modularity, computational gain, and flexibility of the proposed cascaded
filter.



CHAPTER 7. CASCADED FILTERING USING THE SIGMA POINT TRANSFORMATION 130

Table 7.2: RMSE of the estimators averaged 500 trials.

Average % Diff.
RMSE to Full

Full - Position (m) 0.0487 -
Proposed - Position (m) 0.0662 35.9%
SPCI - Position (m) 0.0862 77.0%
Naive - Position (m) 0.1733 256%
Full - Attitude (rad) 0.0190 -
AHRS - Attitude (rad) 0.0306 61.1%
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Figure 7.5: A box plot showing the median RMSE, outliers, and variation
of different estimators over 500 Monte Carlo trials.
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Figure 7.6: The NEES test results for the 500 Monte Carlo trials, showing
the consistency of the proposed estimator.

7.5 Experimental Results

Experimental data is collected for the nonlinear system discussed in Section 7.4.2 using the
prototype shown in Figure 7.4. The IMU data is collected using a Raspberry Pi Sense HAT
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at 240 Hz, and the position measurements are collected at 16 Hz using the Pozyx Creator
Kit, which is a UWB-based positioning system. Five UWB anchors communicate with a
UWB tag placed on the body 84 cm away from the IMU. This is complemented with ground
truth data collected using an OptiTrack optical motion capture system at 120 Hz.

Three datasets are tested using the four estimators discussed in Section 7.4.2. Each run
involves moving the rigid body randomly in a volume of approximately 5 m × 5 m × 2 m
while recording the IMU, UWB, and ground truth data. The main difference between the
three datasets is the pace at which the robot is moved around and rotated.

Figure 7.7: The error trajectories associated with the slow-pace experimental run for the 4 position estima-
tors, and the AHRS. The AHRS is shared by all 3 cascaded estimators. The shaded regions correspond to
the ±3σ bounds, and the colour of each error trajectory and covariance region are the same.

The ±3σ bound error plots for the 4 estimators on the slow pace experiment are shown
in Figure 7.7, and an RMSE-based comparison on the three datasets is shown in Table
7.3. As expected, the naive cascaded filter performs poorly, while the performance of the
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proposed cascaded filter beats the SPCI approach and is comparable to the full estimator.
Not only does the proposed framework achieve a lower position RMSE, but it is also less
conservative as compared to the SPCI. This is further displayed in Figure 7.8, where the KL
divergence [114, Chapter 9] measure shows that the estimated distribution of the proposed
estimator is closer to that of the full estimator, which is the best available estimate of the
true distribution.

Table 7.3: RMSE of the different estimators on 3 experimental runs.

RMSE
Slow Medium Fast

Full - Position (m) 0.2187 0.19613 0.17518
Proposed - Position (m) 0.23138 0.24818 0.28261
SPCI - Position (m) 0.26690 0.32152 0.32045
Naive - Position (m) 0.69616 0.50807 1.3655
Full - Attitude (rad) 0.04400 0.03225 0.02896
AHRS - Attitude (rad) 0.08934 0.07669 0.13757
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Figure 7.8: The logarithm of the KL divergence measure associated with the slow-pace experimental run.
The KL divergence is computed between the estimated distribution of each cascaded estimator and the full
estimator.

Due to imperfectly calibrated hardware, further unmodelled phenomena such as indoor
magnetic perturbations, and nonlinearities of the system, the AHRS in the slow-pace exper-
iment takes over 15 seconds to achieve near steady-state conditions, as shown in Figure 7.7.
Additionally, the AHRS performs poorly particularly in the fast pace experiment, as shown
in Table 7.3. However, the proposed framework still achieves a performance comparable to
the full estimator, which shows that the approximation discussed in Section 7.3.3 is reason-
able, even for such complex systems. Additionally, the worse attitude estimates as compared
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to the simulation runs means that the cross-covariances between the AHRS and the position
estimator are more significant, which is why the naive estimator performs so poorly. This
emphasizes the significance of the proposed estimator, particularly when estimation error is
persistent in the feeding filter.

7.6 Conclusion and Future Work

In this chapter, the importance of modelling cross-covariances in cascaded filtering is ad-
dressed, and a novel approach is introduced using the sigma point transformation. The
main contribution is the probabilistic approximation of the propagation of cross-covariance
terms when the local filters do not estimate a common set of states. The proposed approach
is compared to the naive filtering approach and a Covariance Intersection filter approach
both in simulations and in experiments. Superior, consistent results are achieved for both a
linear and a nonlinear problem. Comparable performance to a full non-cascaded estimator
is also achieved, but with all the advantages of cascaded filtering such as improved flexibility
and reduced computational complexity.

The proposed cascaded filtering algorithm is tested on general problems typically en-
countered in robotics. Future work will involve the implementation of this algorithm in the
multi-robot framework presented in Chapter 6. This will involve having each robot broad-
cast their state estimate, and thus allowing other robots to fuse this state estimate in a
consistent manner using the probabilistic approximation presented in this framework. Ad-
ditionally, given the generalizability of the approach presented in this chapter, future work
will involve open-sourcing the code to allow the robotics community to implement and test
this approach on many different loosely-coupled filtering systems.

Having addressed a potential approach to allowing collaboration among robots, the next
chapter deviates slightly from the general theme of this thesis. The goal of the next chapter
is to further emphasize the generalizability of the proposed algorithms in this thesis, and to
do so, the focus will now shift to an application of UWB-based navigation made possible
by simultaneously designing the ranging protocol and the state estimator. Rather than
considering a team of robots, a single robot in an environment with spaced-out anchors at
unknown locations will be considered, and the goal is to teach the robot a trajectory that
can be repeated autonomously many times.



Chapter 8

Ultra-Wideband Teach and Repeat

Summary

Autonomously retracing a manually-taught path is desirable for many applications, and
Teach and Repeat (T&R) algorithms present an approach that is suitable for long-range
autonomy. In this chapter, the concepts of passive listening and simultaneous clock synchro-
nization and pose estimation is adopted from Chapter 6 to propose an UWB ranging-based
T&R solution for vehicles with limited resources. By fixing single UWB transceivers at dis-
tant and unknown locations in an indoor environment, a robot with 3 UWB transceivers
builds a locally-consistent map during a teach pass by fusing range measurements under
a custom ranging protocol with an on-board IMU and height measurements. The robot
then uses information from the teach pass to retrace the same trajectory autonomously.
The proposed ranging protocol and T&R algorithm are validated in simulation, where it
is shown that the robot can successfully retrace the taught trajectory despite estimating a
globally-inconsistent map of the environment.

8.1 Introduction

UWB-based positioning typically involves having a few static transceivers, or anchors, at
fixed known locations communicating with one or more mobile transceivers, or tags, in
order to obtain range measurements between them. This then allows positioning of the
robot through trilateration or filtering [14], [22], [85]. Alternatively, to overcome the need
for a fixed infrastructure, the most common approach for indoor navigation is simultaneous
localization and mapping (SLAM). Most SLAM algorithms are vision- [115], [116] or LIDAR-
based [117], which requires computationally-heavy processing and large storage to process

134
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Figure 8.1: A 3D indoor environment with spaced-out UWB anchors fixed at unknown positions. The robot
is equipped with 3 UWB ranging tags, and successfully retraces the teach trajectory autonomously in the
repeat pass.

and store images or point clouds. Additionally, SLAM is oftentimes restricted to small
areas, as global map consistency is only achieved through complex data association and loop
closure algorithms that are difficult for larger maps and not always possible [118]. Range-
based SLAM has also been proposed mainly for fixed-infrastructure applications [53], [54],
while [119] proposes dropping beacons from a quadcopter and utilizing the associated range
measurements in a SLAM framework.

A more recent approach to overcoming the pitfalls of SLAM is T&R, where a robot
learns a locally-consistent map of the environment during a teach pass, and then retraces
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the trajectory it took during a repeat pass using the learnt map [120]. As long as a robot
behaves the same way every time relative to its local features, the robot is able to retrace the
same trajectory [120], [121]. This has been studied using stereo cameras [120] and LIDAR
[122] on ground vehicles, and also with monocular cameras [123] and aerial vehicles [124].
As with all vision-based algorithms, difficulties arise when the environment changes due to
weather or other external factors. This requires relying on colour-constant imaging [125],
using multiple experiences simultaneously [126], and/or deep learning approaches for image
association and localization [127], [128].

The contributions of this chapter are threefold and revolve around combining the advan-
tages of using a T&R framework with those of using UWB-based range measurements for
localization.

• Firstly, a ranging protocol is proposed to allow a 3-tag agent to synchronize the clocks
of its tags and receive 3 range measurements from a fixed anchor with only one two-way
ranging (TWR) transaction. This therefore allows necessary additional information for
localization [1] without compromising the frequency at which range measurements are
recorded.

• Secondly, a novel UWB-based T&R framework is presented for a vehicle moving in
an environment with spaced-out fixed anchors at unknown locations over a large area.
The robot also utilizes an inertial measurement unit (IMU) and height measurements.
As is standard with T&R, the robot is manually controlled over a trajectory that is
then autonomously retraced.

• Lastly, the presented framework is tested in simulation using the environment shown
in Figure 8.1 and is shown to achieve sub-metre tracking performance.

The rest of this chapter is structured as follows. The problem is formulated in Section 8.2,
and the ranging protocol is presented in Section 8.3. The proposed teach and repeat passes
are covered in Sections 8.4 and 8.5, respectively. The results are then discussed in Section
8.6, and some concluding remarks are given in Section 8.7.

8.1.1 Notation

Anchor i is denoted si, and the set of all static anchors is denoted S. Tag i on the robot is
denoted pi, and the IMU is assumed to be at point z, as shown in Figure 8.1. The subscript
k is used throughout the chapter to denote the kth time-step as before, while a subscript
i : i + j denotes all the variables at time-steps k ∈ {i, . . . , i + j}. Meanwhile, K is used
to denote the total number of time-steps in each of the teach and repeat passes. When
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applicable, the subscript 0 : K is omitted for conciseness when addressing the full trajectory.
The superscripts t, r, and i are used to allocate variables to the teach pass, the repeat pass,
and the initialization phase of the repeat pass, respectively.

The reference frames used in this text are shown in Figure 8.1. A local reference frame
is denoted Fa, while the body-fixed reference frame is denoted Fb. The map frame Fm
is fixed to the body frame at k = 0, and differs from Fa only through a rotation about
the z-axis and a translation about the x- and y-axes. The vector notations and timestamp
notation suggested in Section 6.1.1 will also be used in this chapter. Meanwhile, r̃ijq is used
to represent a position in R2, and the heading θ̃`q is associated with the DCM C̃`q ∈ SO(2),
an element of the 2D special orthogonal group SO(2).

Additionally, (·)× denotes the skew-symmetric cross-product matrix operator in R3, and
‖·‖Σ =

√
(·)TΣ−1(·) denotes the weighted Euclidean norm. Lastly, w ∼ N (0,Q) and η ∼

N (0,R) represent process and measurement Gaussian white noise, respectively. The random
variables and their covariance matrices always share the same subscripts and superscripts(
e.g., wacc,t

b ∼ N (0,Qacc,t
b )

)
.

8.2 Problem Formulation

Consider a robot with 3 UWB tags in an environment with n spaced-out and fixed UWB
anchors at unknown locations rsiwa , i ∈ {1, . . . , n}, as shown in Figure 8.1. Initially, the robot
is manually driven on a trajectory denoted πt that has approximately the same starting and
ending point on a flat ground. As the robot moves, it records measurements from an IMU,
a height sensor, and range measurements with any anchor that lies within communication
range. The robot is tasked with estimating the trajectory it is following such that it can
be autonomously repeated in the future. Additionally, the robot maps the anchors as they
are detected by estimating their position. These two tasks consequently fall under what
is termed the teach pass, as the robot learns during this process the trajectory it must
follow and a map of the environment it encounters, which is just a map of the UWB anchor
positions.

Despite having access to only the estimated teach trajectory π̂t and the estimated anchor
positions, the robot then attempts to repeat the teach trajectory πt autonomously. This is
termed the repeat pass. The robot first estimates its pose relative to the initial pose in the
teach pass, since the robot at the end of the teach trajectory does not necessarily land at the
same exact position and with the same heading. The repeat pass then involves using a state
estimator and a trajectory-tracking controller to retrace the teach trajectory. A summary of
the major processing blocks is given in Figure 8.2.
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Figure 8.2: A high-level overview of the major processing blocks of UWB T&R.

As is common with SLAM approaches, the robot estimates the trajectory relative to its
initial pose. Therefore, the trajectory states to be estimated in the teach or repeat pass are

π =
[

(rzwm )T (vzw/am )T (φmb)
T
]T
. (8.1)

In the teach pass, the estimated trajectory is stored alongside the estimated anchor positions,
while in the repeat pass the estimated state is input to the controller.
The continuous-time kinematics of the trajectory in the presence of IMU biases are given by

aṙzwm = vzw/am , (8.2)
av̇zw/am = Cmb (uacc

b + βacc
b + wacc

b ) + gm, (8.3)

Ċmb = Cmb (ugyr
b + βgyr

b + wgyr
b )× , (8.4)

where uacc
b , βacc

b , and wacc
b denote the accelerometer measurement, bias, and Gaussian white

noise, respectively, and ugyr
b , βgyr

b , and wgyr
b denote the gyroscope measurement, bias, and

Gaussian white noise, respectively. Meanwhile, gm is the gravity vector resolved in the map
frame. Assuming that the robot lies on a flat ground at the beginning of the teach pass and
that ga =

[
0 0 −g

]
, then gm = ga.

In addition to the trajectory states, bias states must be estimated to correct the IMU
measurements, and clock states must be estimated to correct the UWB range measurements.
The accelerometer and gyroscope suffer from slowly-changing biases that can degrade the
estimation performance if not properly addressed. It is possible to estimate the absolute
IMU biases in this chapter due to the presence of static anchors. The evolution of the biases
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is modelled as a random walk,

β̇
acc
b = wβ,acc

b , β̇
gyr
b = wβ,gyr

b . (8.5)

The robot has 3 UWB tags, Tags p0, p1, and p2. It is assumed that the positions of the
tags relative to the IMU at point z are known in the body frame of the robot; in other words,
the quantities rp1zb , rp2zb , and rp3zb are measured and known beforehand. The communicating
UWB tags rely on ToF measurements to calculate distance measurements, but suffer from
having unsynchronized clocks. To overcome this issue, a ranging protocol similar to the one
proposed in Section 6.4 is utilized. This involves a direct DS-TWR transaction between Tag
p0 on the robot and any anchors within ranging distance of the robot. Meanwhile, Tags
p1 and p2 passively listen-in on the transmitted DS-TWR messages, as further discussed in
Section 8.3. Therefore, p1 and p2 must estimate their clock offset and skew relative to Tag
p0, denoted by τpip0 and γpip0 , respectively for i ∈ {1, 2}. The process model of the clock
states is modelled as in 2.2.

Both the biases and clock states are estimated during the teach pass and the repeat pass,
but neither are recorded as part of the trajectory or fed into the controller. The sole purpose
of estimating these states is to correct the IMU and range measurements to mitigate their
effect on the performance of the estimators. The state being estimated at time-step k is then

xk =
[
πT
k (βacc

k )T (βgyr
k )T (xUWB

k )T
]T
,

where xUWB
k = [τp1p0,k τp2p0,k γp1p0,k γp2p0,k]

T. In order to estimate xk, two exteroceptive
sensors are available. Firstly, height measurements are modelled as

yh = [ 0 0 1 ]rzwm + ηh. (8.6)

Meanwhile, range measurements and the ranging protocol associated with the UWB tags
are discussed in Section 8.3.

8.3 Ranging Protocol

In order to ensure observability of the anchor positions relative to the robot, three tags are
placed on the robot [1]. When Anchor si is within communication range of the robot, the
proposed ranging protocol is shown in Figure 8.3. This involves Tag p0 performing the DS-
TWR protocol presented in Chapter 4 with Anchor si, while Tags p1 and p2 listen-in on all
signals in a manner similar to Section 6.4. Therefore, the 12 recorded timestamps can be
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Figure 8.3: A schematic of the time instances where timestamps are recorded by the three tags on the robot
while Tag p0 performs DS-TWR with Anchor si. Shown here are also Transceivers p1 and p2 on the Robot
passively listening, where the time instance corresponding to the ith passive reception at Transceiver j is
denoted Pi,j . Additionally, the intervals ∆t21 and ∆t31 are defined in this chapter as shown in the figure.

modelled as a function of the distances and clock states between the tags and the anchors.
The timestamps recorded by Tag p0 are

T̃1
p0

= T1 + τp0(T
1) + η1

p0
, (8.7)

R̃2
p0

= T1 +
2

c
dsip0 + ∆t21 + τp0(R

2) + η2
p0
, (8.8)

R̃3
p0

= T1 +
2

c
dsip0 + ∆t31 + τp0(R

3) + η3
p0
, (8.9)
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while the timestamps recorded by Anchor si are

R̃1
si

= T1 +
1

c
dsip0 + τsi(R

1) + η1
si
, (8.10)

T̃2
si

= T1 +
1

c
dsip0 + ∆t21 + τsi(T

2) + η2
si
, (8.11)

T̃3
si

= T1 +
1

c
dsip0 + ∆t31 + τsi(T

3) + η3
si
. (8.12)

Additional measurements are also available at the robot due to its passively-listening tags.
This yields the following additional timestamp measurements,

P̃
1,j
j = T1 +

1

c
dp0j + τj(P

1,j) + η1
j , (8.13)

P̃
2,j
j = T1 +

1

c
dsip0 +

1

c
dsij + ∆t21 + τj(P

2,j) + η2
j , (8.14)

P̃
3,j
j = T1 +

1

c
dsip0 +

1

c
dsij + ∆t31 + τj(P

3,j) + η3
j , (8.15)

where j ∈ {p1, p2}.
In a manner similar to Section 6.4, and following the same assumptions highlighted there,

the following pseudomeasurements are then proposed to be used in the state estimator. Given
that only clock states between the tags on the robot are being estimated, the pseudomea-
surements are chosen such that any clock states associated with the anchors are cancelled
out. Firstly, the standard DS-TWR range measurements from timestamps (8.7)-(8.12) can
be written as

ytof =
1

2

(
(
R̃2
p0
− T̃1

p0

)
− R̃3

p0
− R̃2

p0

T̃3
si
− T̃2

si

(
T̃2
si
− R̃1

si

)
)

≈ 1

c
dsip0 +

1

2

(
η2
p0
− η1

p0
− η2

si
+ η1

si

)
. (8.16)

Meanwhile, from the passive-listening measurements, the following three pseudomeasure-
ments can be generated per passively-listening tag,

yp,1
j = P̃

1,j
j − T̃1

p0
=

1

c
dp0j + τjp0 + η1

j − η1
p0
. (8.17)

yp,2
j = P̃

2,j
j − T̃2

si

=
1

c
dsij − 1

c
dsip0 + τjp0 + γjp0∆t

21 + η2
j − η2

p0
(8.18)

yp,3
j = P̃

3,j
j − T̃3

si

=
1

c
dsij − 1

c
dsip0 + τjp0 + γjp0∆t

31 + η3
j − η3

p0
, (8.19)
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where j ∈ {p1, p2}. As discussed in Section 6.4, the unknown values ∆t21 and ∆t31 are
approximated to the first order as

γjp0∆t
21 ≈ γjp0(T̃

2
si
− R̃1

si
),

γjp0∆t
31 ≈ γjp0(T̃

3
si
− R̃1

si
).

Note that the pseudomeasurements (8.16), (8.18), and (8.19) are a function of distances to
the anchors, while (8.17) is independent of the anchor positions. The distance quantities can
be written as a function of the known quantities and the states and anchor positions that
are being estimated as

dsi` =
∥∥rzwm − rsiwm + Cmbr`zb

∥∥ , (8.20)

dp0j =
∥∥rp0zb − rjzb

∥∥ , (8.21)

for ` ∈ {p0, p1, p2} and j ∈ {p1, p2}.
Additionally note that none of the pseudomeasurements are a function of the clock states

of the anchors, which are not being estimated as each anchor is not always within commu-
nication range of the robot. Nonetheless, the choice of the pseudomeasurements results in
the same noise random variables showing up in (8.16)-(8.19); therefore, the errors in these
pseudomeasurements are correlated, which must be properly modelled when designing state
estimators in a manner similar to Section 6.4.5.

8.4 Teach Pass

Given that the positions of the anchors are unknown, the anchors must be localized when
encountered in the teach pass. Characteristic of T&R algorithms is the lack of loop closure
enforcements. When the robot encounters an anchor i ∈ S for the first time, it estimates and
stores in memory the anchor position. However, when the robot encounters the same anchor
again in the future, the previously estimated position is not used, as this constitutes a loop
closure that requires correcting all the states estimated between the two instances where the
same anchor is detected. In a T&R scenario, the robot disregards the fact that this anchor
was previously encountered and re-localizes the anchor position, since global consistency of
the map is not necessary.

The robot tracks the sequence of initialized anchors and each anchor’s ID and estimated
position. Letting the `th encountered anchor be Anchor i, the initialization result is encoded
in an ordered triple

(
r̂`wm , i, `

)
. The estimated anchor map is then represented as a set of
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ordered triples
M = {

(
r̂`wm , i, `

)
| r̂`wm ∈ R3, i ∈ S, ` ∈ Z≥0}.

where Z≥0 denotes the set of non-negative integers.
During the teach pass, the robot keeps track of the set of currently active anchors C ⊂ S,

the anchors that lie within communication range of the robot. This allows the robot to
use recently-localized anchors to correct its state estimate. When an active Anchor i is no
longer within communication range, Anchor i is dropped from the set of active anchors such
that when Anchor i is detected again, it is re-initialized. The teach pass sequence tracker is
summarized in Algorithm 3.

Algorithm 3 Teach pass anchor sequence tracker.
The id is the ID of the communicating anchor, C is the current set of active anchors, and M
is the anchor map. For all elements (r, i, `) ∈ M, the term “most recent” corresponds to the
element with the largest quantity ` among the elements with i = id.

1: function teachSequenceTracker(anchor, C,M)
2: if anchor ∈ C then
3: r̂`wm = getMostRecentPosition(anchor,M)
4: else
5: r̂`wm = initializeAnchor(anchor)
6: nM = number of elements inM
7: M =M∪ {r̂`wm , anchor, nM}
8: C = C ∪ {anchor}
9: end if
10: for j ∈ C do
11: if j no longer within communication range then
12: C = C\{j}
13: end if
14: end for
15: return r̂`wm , C,M
16: end function

8.4.1 Anchor Localization

Assume that at time-step k Anchor i /∈ Ck is detected as the `th component of the sequence
of detected anchors. In order to localize the anchor, an optimization problem is formulated
using the predicted state x̌t

k, its uncertainty P̌t
k, and the interoceptive and exteroceptive

measurements recorded over a short time window from k to k + λ, where λ is the length of
the window. The goal is to estimate the anchor position r̂`wm to be added to the anchor map
and the state estimates x̂t

k:k+λ to add π̂t
k:k+λ to the estimated teach pose trajectory.

To formulate a discrete-time optimization problem over the states, the process models
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(8.2)-(8.5), alongside the clocks’ process model from (2.10), are concatenated and discretized
to yield a system process model of the form

xt
k+1 = fk

(
xt
k,u

t
k,w

t
k

)
, (8.22)

where ut
k represents the interoceptive measurements. Similarly, the height measurements

(8.6) and UWB pseudomeasurements (8.16)-(8.19) at time-step k are concatenated and rep-
resented using the discrete-time measurement model

yt
k = gk

(
xt
k, r

siw
m ,ηt

k

)
, i ∈ Ck. (8.23)

The optimization problem is then formulated as a standard discrete-time batch problem
with Gaussian errors, thus the maximum a posteriori (MAP) estimate is the solution to

(
x̂t
k:k+λ, r̂

`w
m

)
= arg min

(xtk:k+λ,r`wm )

∥∥xt
k − x̌t

k

∥∥2

P̌t
k

+
k+λ∑

j=k

∥∥yt
j − gj

(
xt
j, r

`w
m , 0

)∥∥2

Rt
j

+
k+λ−1∑

j=k

∥∥xt
j+1 − fj

(
xt
j,u

t
j, 0
)∥∥2

Qt
j

+R−1
h

(
h− [0 0 1] r`wm

)2
.

The last error term corresponds to a prior on the vertical distance of the anchor to the
floor being h. This prevents the estimate from converging to the local minimum associated
with the flip ambiguities, as discussed in Section 3.4.2, that would result in the anchor
being initialized below ground level. The covariance Rh can be tuned to tailor to the user’s
confidence in the height h.

The initial iterate of the states
(
x̂t
k:k+λ

)(0) is obtained by dead-reckoning, while the initial
iterate of the anchor position

(
r̂`mm
)(0) is obtained by assuming a height of h and analytically

solving for the other two components using the range measurement at time-step k. The
iterates are updated using Gauss-Newton or Levenberg-Marquardt until convergence. Once
the optimizer converges, the states π̂t

k:k+λ are added to the estimated pose trajectory, and
the current state of the state estimator is updated to be x̂t

k+λ. Meanwhile, Anchor i is added
to the current set of active anchors Ck+λ, and the ordered triple (r̂`wm , i, `) is added to the
anchor mapM.

8.4.2 Trajectory Estimation

The state estimator is a basic EKF that provides an estimate xt
k ∼ N

(
x̂t
k, P̂t

k

)
at every

time-step k ∈ {0, . . . , K} to be stored as the trajectory to be tracked in the repeat pass. If a
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new anchor is detected at time-step k, the state estimator does not correct the estimates at
time-step k, but the predicted state xt

k ∼ N
(
x̌t
k, P̌t

k

)
is input into the anchor initializer. The

state estimator then resumes predicting and correcting at time-step k+λ with state estimate
xt
k+λ ∼ N

(
x̂t
k+λ, P̂t

k+λ

)
, which comes from solving the optimization problem formulated in

Section 8.4.1. Additionally, when an encountered anchor is initialized and is active, the
estimated anchor position is used in the correction step as if it is the true anchor position,
which leads to globally-inconsistent but locally-consistent maps.

8.5 Repeat Pass

8.5.1 State Initialization

At the end of the teach pass, the robot is assumed to land on the floor close to its original
take-off location, such that the initial pose of the repeat trajectory is similar to that of the
teach trajectory. However, it is unlikely that the robot lands at the same exact position
and that the robot is oriented the same way it was when it first took off. Under a flat-floor
assumption, the robot would have the same height, pitch and roll, but the 2D position and
heading are not necessarily the same. Therefore, before attempting to retrace the teach pass
trajectory, the robot must estimate its initial 2D position, denoted r̃zw,im = Drzw,rm,0 ∈ R2, where

D =

[
1 0 0

0 1 0

]
, as well as its heading, denoted using a DCM C̃i

mb ∈ SO(2). During the

repeat pass’s state initialization, the robot remains static, and therefore the process model
associated with the 2D position and heading is simply

a ˙̃rzw,im = 0, ˙̃Ci
mb = 0.

As before, the robot still needs to estimate its biases and clock states. The process model
of the biases and clock states are as given in (8.5) and (2.10), respectively. Therefore, the
state vector to be initialized is of the form

x̃i =
[
(π̃i)T (βacc,i)T (βgyr,i)T (xUWB,i)T

]T
,

where π̃i =
[ (

r̃zw,im

)T
θ̃imb

]T.
The anchor-independent range measurements are of the same form as given in (8.17).

However, the anchor-dependent measurements (8.16), (8.18), and (8.19) are a function of
the robot’s pose, and therefore should be written explicitly as a function of the 2D states
by isolating the components of the third dimension. This is done by simply rewriting the
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distance model (8.20) as

dsi` =
√
n`k +m`

k (8.24)

for ` ∈ {p0, p1, p2}, where

n` =
∥∥∥r̃zw,im − Drsiwm + C̃i

mbDrp`zb
∥∥∥

2

, (8.25)

m` = ‖Erp`zm − Ersiwm ‖2 , (8.26)

E =
[

0 0 1
]
, and Erp`zm = Erp`zb at time-step k = 0 since Fm is fixed to the initial body

frame of the teach pass. Additionaly, note that rsiwm is the estimated position of the first
anchor in the teach pass; in other words, rsiwm comes from the element in the anchor mapM
with ` = 0.

The height measurements are not useful when the robot is static on the floor, but the
accelerometer and gyroscope measurements can be used as bias measurements as any non-
zero measurement is a direct consequence of only gravity, noise, and biases. In fact, in the
static case, the accelerometer and gyroscope measurements are modelled as

yacc,i
b = −βacc,i

b − gb − wacc,i
b , ygyr,i

b = −βgyr,i
b − wgyr,i

b (8.27)

where again assuming that the robot lies on a flat ground and that ga = [ 0 0 −g ], thus
gb = ga.

In order to obtain a reliable estimate of the initial pose of the robot, a batch estimation
problem similar to the one presented in Section 8.4.1 is formulated. As before, a concatenated
and discretized process model and measurement model of the range, accelerometer, and
gyroscope measurements of the form

x̃i
k+1 = f̃k

(
x̃i
k, w̃

i
k

)
, ỹi

k = g̃k
(
x̃i
k, r

siw
m , η̃i

k

)
(8.28)

are assumed, where k ∈ {0, . . . , L} and L is the size of the initialization window. The
initialization problem is then formulated as

ˆ̃xi
0:L = arg min

x̃i0:L

∥∥x̃i
0 − ˇ̃xi

0

∥∥2
ˇ̃Pi
0

+
L−1∑

j=0

∥∥∥x̃i
j+1 − f̃j

(
x̃i
j, 0
)∥∥∥

2

Q̃i
j

+
L∑

j=0

∥∥ỹi
j − g̃j

(
x̃i
j, r̂

siw
m , 0

)∥∥2

R̃i
j

.

This relies on an assumption that exactly one anchor is within communication range at
the beginning of the trajectory, and the position of the robot is initialized relative to that
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anchor’s estimated position r̂siwm . This, however, can be easily extended to include multiple
anchors.

As before, Gauss-Newton or Levenberg-Marquardt can be used to solve this problem.
The estimate ˆ̃xL is then used to initialize the repeat pass’s EKF. In particular,

x̌r
0 =

[
(π̌r

0)T (β̂
acc,i
L )T (β̂

gyr,i
L )T (x̂UWB,i

L )T
]
,

where π̌r
0 =

[ (
ˆ̃rzw,im

)T
0h 0T

v 0T
rp

ˆ̃θimb

]T
. The components 0h ∈ R, 0v ∈ R3, and 0rp ∈ R2

correspond to an estimate of zero height, velocity, and roll and pitch, respectively.

8.5.2 State Estimation

The state estimator in the repeat step is an EKF with the same model assumptions as the
EKF used in the teach step. The repeat step EKF provides an estimate xr

k ∼ N
(

x̂r
k, P̂r

k

)

at every time-step k ∈ {0, . . . , K}. The main differences between the teach and repeat
estimators are that the state estimate and its uncertainty are initialized using the algorithm
discussed in Section 8.5.1 for the repeat estimator, and that the anchor position estimates
from the teach step are assumed to be the true positions of the anchors in the repeat step.

A key component of the repeat pass is the anchor sequence tracker that allows the robot
to match each anchor with the corresponding feature from the anchor map. This requires
the robot to keep track of active anchors in a manner similar to the teach pass estimator, as
presented in Section 8.4. The tracker removes anchors that are no longer within communi-
cation range from the set of active anchors, and increments through the anchor map as new
previously-inactive anchors are detected.

8.5.3 LQR Controller

The trajectory-tracking controller implemented is based on the finite-horizon LQR controller
presented in [129]. The trajectory to be tracked is the teach pass estimated pose trajectory
π̂t, represented at any time-step k as an element of a matrix Lie group X̂t

k ∈ SE2(3).
Similarly, the repeat pass estimated pose π̂r

k at time-step k is represented as X̂r
k ∈ SE2(3).

The left-invariant tracking error is then δXk =
(
X̂t
k

)−1X̂r
k.

The control inputs at any time-step k are the thrust fb and the angular velocity ωbwb .
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The dynamics are modelled as

av̇zw/am = Cmb

[
0 0 fb

]T
+ gm + wf

m, (8.29)

Ċmb = Cmb

(
wbw
b + wω

b

)×
, (8.30)

and the command inputs are computed similarly to [129].
Even though the estimated teach trajectory drifts from the true trajectory, the anchors

are localized based on the drifted trajectory. Since the estimated anchor positions are utilized
in the repeat pass estimator, the estimated repeat pass trajectory drifts in the same direction.
By controlling the robot to retrace the estimated teach pass trajectory through knowledge of
only the repeat pass estimator’s state, the robot is therefore tracing the true teach trajectory.
However, when there are no anchors within communication range, the repeat pass estimator’s
state might drift in a different direction than the teach pass estimator. During such intervals,
the repeat pass estimator must not be trusted by the controller. Therefore, whenever no
anchors are within range, the controller is temporarily turned off and the reference inputs
from the teach pass are implemented in a feedforward fashion.

8.6 Results

The proposed UWB T&R algorithm is evaluated in simulation in the environment presented
in Figure 8.1 and with a 3-tag quadcopter. All sensor measurements are corrupted with
Gaussian white noise with characteristics corresponding to standard low-cost sensors. The
results of the teach and repeat passes are shown in Figures 8.1 and 8.4. The teach pass
estimator drifts with time, consequently also resulting in poor anchor localization. Nonethe-
less, the map is “locally consistent” in the T&R sense, meaning that locally the estimated
trajectory relative to the estimated anchor position is representative of the true trajectory
relative to the true anchor positions. Therefore, by tracking the estimated teach trajectory
and using the estimated anchors in the repeat estimator, the LQR controller is able to to
track the true teach trajectory as shown in Figure 8.1. This is despite the robot having a
poor and globally inconsistent estimate of the true trajectory.

The trajectory-tracking controller computes its tracking error at any time-step by com-
paring the teach estimator’s pose and the repeat estimator’s pose at that time-step. There-
fore, the controller attempts to get the estimated repeat trajectory as close as possible to the
estimated teach trajectory. Nonetheless, the controller does not know what its true tracking
error is, which is the error between the true repeat trajectory and the true teach trajectory.
This error shown in Figure 8.5 for the position and heading is the metric in which the pro-
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Figure 8.4: (Left) The true and estimated trajectories during the teach pass, and the true and estimated
anchor positions as represented by the red and green blocks, respectively. There are more green blocks than
red blocks as an anchor is initialized every time it is encountered. (Right) The estimated teach and repeat
trajectories.
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Figure 8.5: The position and heading error of the true repeat
pass trajectory relative to the true teach pass trajectory.

posed algorithm is evaluated. As shown for this particular example, the robot manages to
autonomously retrace the teach trajectory to within a metre and approximately 10 degrees
in heading.

To statistically evaluate the performance of the proposed framework in simulation, 1000
Monte Carlo trials are performed. All trials share the same environment and the same
teach trajectory, but the noise realizations, biases, clock states, and initial repeat pass’s
pose are distinct. The repeat position tracking root-mean-squared-error (RMSE) given by
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0 1 2 3 4

Repeat controller

Teach estimator

Figure 8.6: A box plot for the RMSE on 1000 Monte Carlo simulation trials. Although the teach estimator
performs poorly, the robot manages to retrace the teach trajectory to within 1-metre accuracy for all runs.

eRMSE,r =

√
1
N

∑K
k=1

∥∥rzw,rm − rzw,tm

∥∥2, and the position estimation RMSE given by eRMSE,t =√
1
N

∑K
k=1

∥∥r̂zw,tm − rzw,tm

∥∥2 are computed for each trial. The results are summarized in Fig-
ure 8.6. Despite the estimated trajectory available to the robot being poor with an average
RMSE of 1.44 m, the tracking RMSE is always below 1 m, with an average of 0.26 m.

8.7 Conclusion

UWB-based T&R, as opposed to vision-based T&R, is presented as a novel application of the
algorithms presented in this thesis. A custom ranging protocol allows a 3-tag robot to range
with the UWB anchors without compromising ranging frequency, and the measurements
are fused with IMU and height measurements to compute a locally-consistent map and an
estimated teach trajectory. To retrace the trajectory autonomously, the robot first estimates
its initial pose in the repeat pass by remaining static, then fuses all on-board sensors with
the map information from the teach pass as it navigates the same trajectory. The proposed
algorithm is shown in simulation to be capable of retracing the trajectory with sub-metre
tracking error.

Future work involves validating the algorithm in real-world experiments on ground and/or
aerial vehicles, and comparing the tracking performance and computational cost to a SLAM-
based solution. Additionally, as part of the process of further validating this T&R algo-
rithm, another goal is to open-source the corresponding code to allow implementation by
the robotics community on many different systems. Lastly, this T&R application is one
of many potential novel applications enabled by the ability to simultaneously design rang-
ing protocols and state estimation algorithms, and future work aims to explore other novel
single-robot and multi-robot applications.



Chapter 9

Concluding Remarks

This thesis studies practical localization approaches for robots utilizing UWB radio. The goal
of this thesis is to simultaneously design ranging protocols and state estimation algorithms
to implement practical, scalable, and accurate localization algorithms. To the Author’s
knowledge, and at the time of writing this thesis, no other methods exist that combine
custom ranging protocols, on-manifold state estimation, and IMU preintegration for efficient
communication and odometry sharing.

The journey of the thesis can be summarized as follows. Firstly, in Chapter 3, the
observability of the relative positions between robots in 3D from just range measurements is
studied, and a sufficient condition for observability is then derived. This motivated the use
of multi-tag robots throughout the remainder of the thesis.

The second thrust of this thesis in Chapters 4 and 5 looks into improving the qual-
ity of the UWB measurements themselves. The former chapter looks at the accuracy of
the measurements, and consequently a new ranging protocol is proposed and a data-driven
calibration procedure for removing any systematic error is presented and evaluated in ex-
periments. Meanwhile, Chapter 5 addresses the precision of the measurements, where an
optimization problem is proposed to maximize the amount of information attained in one
unit of time.

The next chapter, Chapter 6, addresses many of the limitations of existing UWB-based
localization solutions by utilizing the concept of passive listening. By allowing robots to
listen-in on neighbours, more robots can be added to the team without reducing the rate
at which each robot gets measurements. Additionally, the proposed communication scheme
allows a simple MAC protocol and allows robots to broadcast IMU information, which ben-
efits from preintegration to allow for efficient data transfer and storage. All these benefits
are then utilized in a simultaneous clock-synchronization and relative-pose estimator, where
the relative pose states are represented and manipulated directly on the SE2(3) manifold.

151
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In order to allow the robots to share their state estimates with one another, the problem
of loosely-coupled or cascaded filtering is then addressed in Chapter 7. A probabilistic
approximation for the cross-covariances that develop is then proposed and evaluated on the
common robotics problem of an attitude-and-heading reference system (AHRS) feeding into
a position estimator.

Lastly, Chapter 8 showcases the novel applications made possible through simultaneous
ranging-protocol and state-estimator design. A novel UWB-based teach-and-repeat (T&R)
framework is presented, where a robot manages to autonomously retrace a taught trajectory
in an environment with spaced-out static anchors at unknown locations.

Nonetheless, the presented work in this thesis is not perfect, and there are a few potential
areas for improvement as will be discussed next. Nonetheless, the Author hopes that this
thesis will serve as a basis for future work in the field of UWB-based localization, and that
the work presented here will be a stepping stone towards the goal of enabling robots to
operate in a fully autonomous-manner in unknown environments.

9.1 Future Work

The work presented in this thesis mainly addresses the use of UWB for inter-robot ranging
and communication. Nonetheless, robots need to be able to interact with their environment,
which requires the use of other sensors such as cameras or LIDARs. The goal of this thesis
is to build the foundation for a practical and scalable UWB-based localization system, and
the next step is to integrate other sensors to allow robots to interact with their environment.
Additionally, this external information will be required to estimate IMU biases, which in the
case of inter-robot ranging is not possible as the biases are unobservable, and only relative
IMU biases can be estimated as shown in Appendix E.

Another potential area for improvement is the quality of the odometry. Dead-reckoning
IMU alone is prone to significant drift in a short period of time, which necessitates the use
of some form of correction. The problem with UWB alone is that the range measurements
do not provide a lot of information to correct the drift, meaning that IMU + UWB only is
not sufficient for highly-accurate localization that would be sufficient for closed-loop control.
Future work should look at potentially improving the quality of the odometry by imposing
constraints on the motion model of the robots to characterize physical limitations, potentially
through data-driven approaches.

The discontinuous ambiguities discussed in Section 3.4.2 also present another challenge
for UWB-based localization, where the filter sometimes converges to the local minimum at
the ambiguity. To address this, multi-modal estimation tools, such as the Gaussian-sum
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filter, can be utilized to allow the filter to converge to the global minimum.
The majority of the algorithms presented in this thesis are tested in simple lab settings,

whereas real-life scenarios involve more complex environments that introduce more sources
of error in the UWB range measurements due to non-line-of-sight (NLOS). Future work will
look at the effect of NLOS on the performance of the proposed algorithms, and potentially
incorporating NLOS into the calibration procedure presented in Chapter 4.

Lastly, to allow the community to benefit from the hardware used in this thesis, a dataset
of the collected measurements and the ground-truth trajectories will be made publicly avail-
able. The hardware will also be used to evaluate the T&R framework, which will be made
open-source for the community to use.



Appendix A

Hardware

A.1 Ultra-wideband

Figure A.1: The different UWB transceivers used. (Left) Pozyx anchor. (Middle) Pozyx tag. (Right)
Custom-built tag.

The experiments in this thesis involved the use of two different versions of UWB transceivers;
an off-the-shelf version supplied by Pozyx [130], and a custom-built version. Both of these
transceivers are based on the DWM1000 module [7] supplied by Qorvo (formerly Decawave),
and are shown in Figure A.1. The DWM1000 is a UWB transceiver that operates in the 3.5
GHz to 6.5 GHz frequency range, and is capable of ranging with a precision of 10 cm. The
DWM1000 is also capable of data transfer at a rate of 6.8 Mbps.
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A.1.1 Pozyx

At the beginning of this project, a ready-to-use off-the-shelf UWB transceiver was required
to test the relative position estimation algorithms. The choice of the Pozyx system was
motivated by the fact that it satisfied that requirement, and the system was used in the
experiments in Chapters 3 and 7. The Pozyx system consists of two different types of UWB
transceivers; anchors and tags. The anchors are fixed to the environment, and are used as
reference points for the tags. The tags are attached to the robots, and are used to estimate
their relative positions. In the presence of 4 or more anchors, the Pozyx system can be used
to directly output position measurements, as is used in Chapter 7. The Pozyx system is
shown in Figure A.1.

Nonetheless, the performance obtained from the relative position estimators is not great,
and this is largely due to inaccuracies in the UWB measurements. To characterize the
performance of the Pozyx system, 5 Pozyx anchors are placed around a room as shown in
Figure A.2, and a robot with 1 Pozyx tag moves around randomly while collecting range
measurements. Clearly, the mean and mode of the measurements are positively biased and
the measurements have a lot of variance, which is typical of uncalibrated UWB systems when
used indoors.

This motivated the idea of digging into the UWB calibration procedure and tying the
ranging protocols with the localization algorithms through, for example, clock state estima-
tion and passive listening as discussed in Chapter 6. Given that off-the-shelf UWB systems
are typically not fully customizable, a custom-built UWB system is used.

A.1.2 Custom-built PCBs

Collaborators at the Mobile Robotics and Autonomous Systems Laboratory (MRASL) at
Polytechnique Montreal have built a DWM1000-based UWB transceiver, shown in Figure
A.3. This transceiver is compact and lightweight, measuring at 32 mm × 49 mm, and is
much smaller than the Pozyx transceivers as shown in Figure A.1. These transceivers also
weigh 8 grams each.

The main advantage of using these over the Pozyx system is complete customizability and
accessibility of the DWM1000 microprocessor’s registers. The firmware for these transceivers
has been written from scratch in C, which allowed for the implementation of the calibration
procedures and ranging protocols discussed in Chapters 4, 5, and 6. This in fact yielded
much better range measurements as shown in Chapter 4. The firmware is also written in a
way that allows for easy integration with the robot operating system (ROS), which is used
for integrating the UWB transceivers with the robots. Note that all algorithms presented
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(a) The setup for the experiment. There is 1 UWB tag on the ground
robot, which moves around randomly in an environment with 5 UWB
anchors (1 is not visible in the figure).

(b) The distribution of the bias in the measurements.

Figure A.2: Testing the accuracy of the Pozyx system.

in thesis are not dependent on the specific hardware used, and can be implemented on any
open-access UWB transceiver.

A.1.3 Media-Access Control

Media-access control (MAC) is the term used to address algorithms used to control when each
pair of transceivers range with one another while preventing other transceivers from ranging
during this window to prevent message collision. This is typically done using time-division
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Figure A.3: The custom-built UWB transceiver, with labels identifying the different components.

multiple-access (TDMA) or the token-passing protocol [31, Chapter 3.3]. The token-passing
protocol is implemented on both the Pozyx and custom-built transceivers, and is used in
the experiments in Chapters 3 and 7. This involves the target transceiver in one TWR
transaction being the next initiating transceiver, and therefore prevents any two transceivers
initiating a transaction at the same time. The maximum ranging frequency that was attained
with the Pozyx system is 16 Hz, while a ranging frequency of 240 Hz was achieved with the
custom-built modules.

Passive listening, as presented in Chapter 6, allows an alternative algorithm, where a
user-defined sequence of ranging pairs can be made known to all robots. Each robot can
then keep track of which pair in the sequence is currently ranging, and initiate a TWR
transaction to a specified transceiver when it is its turn to do so. This MAC protocol
is named the common-list protocol. The experiments in Chapter 6 use the common-list
protocol.

A.1.4 Radiation Pattern

A source of errors in UWB ranging is the fact that the UWB antennae used in practice
are not perfectly omni-directional. To see this, an experiment is conducted where one tag
is placed on a tripod, and another tag is placed on a robot rotating in place as shown in
Figure A.4. The tripod is placed at different angles and different distances with respect
to the rotating robot, and the received signal power is recorded. The results are shown
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Figure A.4: The experimental set-up with one tag on a robot rotating in place and another tag on a static
tripod.

Figure A.5: The radiation pattern when the tripod is placed at different angles and different distances with
respect to the rotating robot. The radial axes refers to the received signal power in dBm, and the angular
axes refers to the heading of the robot with respect to the tripod.

in Figure A.5. As expected, the received signal power is a function of the relative pose
between the transceivers, which motivates the use of the received signal power to correct the
pose-dependent bias in the UWB measurements as discussed in Chapter 4.

A.2 Uvify IFO-S Quadcopter

The experiments in Chapters 3 and 7 use hand-held sensor rigs equipped with UWB transceivers
to simulate moving robots. Nonetheless, this is problematic as the human body is an obstacle
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(a) The Uvify IFO-S quadcopter with 2 custom-made UWB transceivers.

(b) Three Uvify IFO-S in a triangle formation. (c) Three Uvify IFO-S in a line formation.

Figure A.6: The quadcopters used in this thesis.

that interferes with the messages being transmitted between the transceivers. Additionally,
these hand-held rigs do not represent real-world scenarios, where IMU measurements for
example suffer from additional sources of error due to vibrations on the quadcopter.

This motivated the use of the ready-to-use off-the-shelf Uvify IFO-S quadcopter [131],
which comes equipped with a Jetson Nano computer running Ubuntu 18.04 and a Pixhawk 4
autopilot. Two custom-made UWB transceivers are fitted to the quadcopter as shown in
Figure A.6a approximately 42 cm apart, and hours of data are collected in a 5 m × 5 m
× 2 m space with 3 quadcopters flying around as shown in Figure A.6. The data collected
is then used to test the calibration and relative pose estimation algorithms in Chapters 4
and 6.



Appendix B

Fold Increase in Measurements

When there are n + 1 robots and 2 transceivers per robot, the total number of transceivers
is nt = 2(n+ 1). Therefore, the number of ranging pairs with transceivers on distinct robots
is

np =
2(n+ 1)(2(n+ 1)− 1)

2
− (n+ 1) = 2n(n+ 1).

The number of direct measurements between all robots is then 2np (one range and one offset
measurement per pair), while the number of passive listening measurements recorded at all
robots is np(3(nt − 2)) = 6nnp. Therefore, the fold increase in measurements is

2np + 6nnp

2np
= 1 + 3n

when considering a centralized approach where passive listening measurements from all
robots are available.

A similar analysis can be done from the perspective of one robot that does not have access
to passive listening measurements recorded at neighbouring robots. Without passive listening
it can be shown that the robot only gets 8n distinct measurements, while with listening-in
on neighbouring robots’ messages the robot gets 2np−8n new measurements from the direct
measurements between the neighbours and 12n2 new passive listening measurements. This
can be shown to be a (1

2
+2n)-fold increase in the number of measurements from the individual

robot’s perspective.
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Appendix C

Linearizing the Range Measurement
Model

Consider as in (6.10) an expression of the form

d =
∥∥∥
(
Π
(
T2r̃2 − T1r̃1

))∥∥∥ , (C.1)

where T1,T2 ∈ SE(3) and r1, r2 ∈ R5. Squaring both sides and perturbing the measurement
and the pose states yields

(d̄+ δd)2 =
(
Π
(

Exp(δξ2)T̄2r̃2 − Exp(δξ1)T̄1r̃1

))T(
·
)
,

which, using (2.21), can be expanded to give

d̄2 + 2d̄δd ≈ (ΠT̄2r̃2)TΠT̄2r̃2 + (ΠT̄1r̃1)TΠT̄1r̃1

− (ΠT̄2r̃2)TΠT̄1r̃1 − (ΠT̄1r̃1)TΠT̄2r̃2

− (Πδξ∧2 T̄2r̃2)TΠT̄1r̃1 − (ΠT̄2r̃2)TΠδξ∧1 T̄1r̃1

− (Πδξ∧1 T̄1r̃1)TΠT̄2r̃2 − (ΠT̄1r̃1)TΠδξ∧2 T̄2r̃2,

where higher order terms have been neglected. Cancelling out the nominal terms on both
sides, using the fact that each term is scalar, and recalling (2.20),

2d̄δd = −2(ΠT̄2r̃2)TΠδξ∧1 T̄1r̃1 − 2(ΠT̄1r̃1)TΠδξ∧2 T̄2r̃2

= −2(ΠTΠT̄2r̃2)T(T̄1r̃1)�δξ1 − 2(ΠTΠT̄1r̃1)T(T̄2r̃2)�δξ2.
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Therefore, the linearized model for (C.1) is

δd = −1

d̄
(ΠTΠT̄2r̃2)T(T̄1r̃1)�δξ1 −

1

d̄
(ΠTΠT̄1r̃1)T(T̄2r̃2)�δξ2.



Appendix D

Discretizing the Input Matrix

The matrices Ũ0,k and Ũi,k in (6.26) are of the general form

Ũ =

[
u∧ e4

01×4 0

]
, (D.1)

where u =
[
ωT αT

]T
, (·)∧ is the wedge operator in SE(3), and e4 =

[
01×3 1

]T
.

Consequently,

U = exp(Ũ∆t) =
∞∑

`=0

1

`!

(
Ũ∆t

)`

= 1 +

[
u∧ e4

0 0

]
∆t+

1

2!

[
(u∧)2 u∧e4

0 0

]
(∆t)2 +

1

3!

[
(u∧)3 (u∧)2e4

0 0

]
(∆t)3 + . . .

=

[ ∑∞
`=0

1
`!

(u∧∆t)`
∑∞

`=0
1

(`+1)!
(u∧∆t)`e4∆t

0 1

]
. (D.2)

Note that
∑∞

`=0
1
`!

(u∧∆t)` = Exp(u∆t), where Exp is the SE(3) exponential operator, giving

∞∑

`=0

1

`!
(u∧∆t)` =

[
Exp(ω∆t) ∆tJl(ω∆t)α

0 1

]
, (D.3)

and

Jl(ψ) =
∞∑

`=0

1

(`+ 1)!

(
φφ×

)`

=
sinφ

φ
1 +

(
1− sinφ

φ

)
φφT +

1− cosφ

φ
φ×
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is the left Jacobian of SO(3), where φ = |ψ| and φ = ψ/φ. Meanwhile,

∞∑

`=0

1

(`+ 1)!
(u∧∆t)`

= 1 +
1

2!

[
ω× α

0 0

]
∆t+

1

3!

[
(ω×)2 ω×α

0 0

]
(∆t)2 +

1

4!

[
(ω×)3 (ω×)2α

0 0

]
(∆t)3 + . . .

=

[ ∑∞
`=0

1
(`+1)!

(ω×∆t)`
∑∞

`=0
1

(`+2)!
(ω×∆t)`α∆t

0 1

]

=

[
Jl(ω∆t) ∆t

2
Nl(ω∆t)α

0 1

]
, (D.4)

where

N(ψ) = 2
∞∑

`=0

1

(`+ 2)!

(
φφ×

)`

= φφT + 2

(
1

φ
− sinφ

φ2

)
φ× + 2

cosφ− 1

φ2
φ×φ×.

Substituting (D.3) and (D.4) back into (D.2) gives

U =




Exp(ω∆t) ∆tJl(ω∆t)α ∆t2

2
Nl(ω∆t)α

1 ∆t

1


 . (D.5)



Appendix E

Addressing IMU Biases

The need to estimate IMU biases is particularly important for applications that involve
long-term navigation. As compared to the framework presented in this thesis, most robotic
applications involve additional exteroceptive sensors such as GPS, a magnetometer, or a
camera that provide measurements relative to static environmental quantities, which allow
individual robots to estimate their own IMU biases using standard methods [8, Ch. 10],
[132], [133]. In a multi-robot scenario, these bias estimates can be used by each robot to
correct its own IMU measurement before adding the measurement to the RMI. This is a
loosely-coupled solution that overcomes the need for each robot to share its IMU biases with
its neighbours.

In this thesis, only range measurements are available that provide constraints among
two moving bodies, hence estimating the biases is trickier as there is no static reference.
Nonetheless, even though the proposed framework will mostly be used alongside additional
exteroceptive sensors such as a camera to allow for real-world applications, it is indeed
important to address the issue of IMU biases in the context of the framework presented
in this thesis, and particularly Chapter 6, to allow long-term navigation without relying
on additional sensors. To do so, this appendix presents how gyroscope biases and relative
accelerometer biases can be estimated while maintaining the differential Sylvester equation
form of the process model as shown in (6.25), under a few assumptions.

The remainder of this appendix is based on [134], and is organized as follows. Section
E.1 presents the pose process model with IMU biases, and Section E.2 presents the bias
process model. In Section E.3, preintegration of the IMU measurements. The simulation
and experimental results are shown in Sections E.4 and E.5, respectively.
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E.1 Pose Process Model with Bias

The IMU biases affect the process model presented in Section 6.5, but the ranging protocol
and the form of the measurement model from Section 6.4 remain unchanged. The relative
attitude process model is

Ċ0i = −
(
ω0a

0 − βgyr,0
0

)×C0i + C0i

(
ωiai − βgyr,i

i

)×
(E.1)

in the presence of bias, where βgyr,i
i is the bias of the gyroscope of Robot i resolved in the

Robot i’s body frame. Similarly, the relative velocity process model is

0v̇i0/a0 = −
(
ω0a

0 − βgyr,0
0

)× vi0/a0 + C0i

(
αii − βacc,i

i

)
− (α0

0 − βacc,0
0 ) (E.2)

= −
(
ω0a

0 − βgyr,0
0

)× vi0/a0 + C0iα
i
i −α0

0−C0iβ
acc,i
i + βacc,0

0︸ ︷︷ ︸
βacc,0i
0

(E.3)

= −
(
ω0a

0 − βgyr,0
0

)× vi0/a0 + C0iα
i
i −α0

0 + βacc,0i
0 , (E.4)

where βacc,i
i is the bias of the accelerometer of Robot i resolved in the Robot i’s body frame,

and βacc,0i
0 , βacc,0

0 −C0iβ
acc,i
i is the relative accelerometer bias of Robot 0 relative to Robot

i, resolved in Robot 0’s body frame. Lastly, the relative position process model is

0ṙi00 = −
(
ω0a

0 − βgyr,0
0

)× ri00 + vi0/a0 . (E.5)

Note that the choice of estimating the relative accelerometer bias βacc,0i
0 and the absolute

gyroscope bias βgyr,0
0 is made to ensure that the process model remains of the form of a

differential Sylvester equation,

Ṫ0i =




Ċ0i
0v̇i0/a0

0ṙi00
0

0




= −







(ω0a
0 )
×
α0

0

1

0


−




(
βgyr,0

0

)×
βacc,0i

0

0

0





T0i

+ T0i







(ωiai )
×
αii

1

0


−




(
βgyr,i
i

)×
0

0

0







, −(Ũ0 − B̃0)T0i + T0i(Ũi − B̃i). (E.6)
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This is of a similar form as the process model (6.25), and has a closed-form solution of the
form

T0i,k+1 = exp((Ũ0,k − B̃0,k)∆t)
−1

︸ ︷︷ ︸
B−1
0,k

T0i,k exp((Ũi,k − B̃i,k)∆t)︸ ︷︷ ︸
Bi,k

(E.7)

for an initial condition T0i,k.
The next step is then to linearize the discrete-time process model, in a manner similar

to Section 6.5.3. Defining ΩB
0,k ,

(
ω0a

0,k − βgyr,0
0,k

)
∆t yields

B0,k =




Exp(ΩB
0,k) ∆tJl

(
ΩB

0,k

) (
α0

0,k − βacc,0i
0,k

)
∆t2

2
N
(
ΩB

0,k

) (
α0

0,k − βacc,0i
0,k

)

1 ∆t

1




= M Exp







∆t1
∆t1

∆t2

2
Jl
(
ΩB

0,k

)−1 N
(
ΩB

0,k

)




︸ ︷︷ ︸
VB
0,k

([
ω0a

0,k

α0
0,k

]

︸ ︷︷ ︸
u0,k

−
[
βgyr,0

0,k

βacc,0i
0,k

]

︸ ︷︷ ︸
β0,k

)



, M Exp
(
VB

0,k(u0,k − β0,k)
)
.

Perturbing this with respect to the input u0,k and the bias β0,k yields

B0,k = B̄0,k Exp
(
LB

0,k(δu0,k − δβ0,k)
)
,

where LB
0,k , J l(−V̄B

0,k(ū0,k− β̄0,k))V̄B
0,k, and J l(·) is the left Jacobian of SE2(3). Similarly,

defining ΩB
i,k ,

(
ωiai,k − βgyr,i

i,k

)
∆t,

Bi,k =




Exp(ΩB
i,k) ∆tJl

(
ΩB
i,k

)
αii,k

∆t2

2
N
(
ΩB
i,k

)
αii,k

1 ∆t

1




= M Exp







∆t1
∆t1

∆t2

2
Jl
(
ΩB
i,k

)−1 N
(
ΩB
i,k

)




︸ ︷︷ ︸
VB
i,k

([
ωiai,k
αii,k

]

︸ ︷︷ ︸
ui,k

−
[

1
0

]

︸ ︷︷ ︸
E

βgyr,i
i,k

)



, M Exp
(

VB
i,k(ui,k − Eβgyr,i

i,k )
)
.
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Perturbing this with respect to the input ui,k and the bias βgyr,i
i,k yields

Bi,k = B̄i,k Exp
(

LB
i,k(δui,k − Eδβgyr,i

i,k )
)
, (E.8)

where LB
i,k , J l(−V̄B

i,k(ūi,k − β̄gyr,i
i,k ))V̄B

i,k.

E.2 Bias Process Model

Having derived and linearized the pose process model, the focus now shifts to the bias process
model. The bias states being estimated are the gyroscope biases βgyr,0

0 and βgyr,i
i , and the

relative accelerometer bias βacc,0i
0 . The evolution of IMU biases is oftentimes modelled as a

random walk [79], [133]. Therefore, the process model for the gyroscope biases is given by

βgyr,0
0,k+1 = βgyr,0

0,k + ∆twgyr,0
0,k , (E.9)

βgyr,i
i,k+1 = βgyr,i

i,k + ∆twgyr,i
i,k . (E.10)

The relative accelerometer bias is more involved. The evolution of the individual ac-
celerometer biases of the robots are also modelled as random walks,

βacc,0
0,k+1 = βacc,0

0,k + ∆twacc,0
0,k , (E.11)

βacc,i
i,k+1 = βacc,i

i,k + ∆twacc,i
i,k . (E.12)

The evolution of the relative accelerometer bias is a function of the individual accelerometer
biases of the robots and the relative pose between the robots, and is given by

βacc,0i
0,k+1 = βacc,0

0,k+1 −ΠT0i,k+1Π
Tβacc,i

i,k+1, (E.13)

where Π ,
[

13 03×2

]
∈ R3×5. Using (E.7), (E.11), and (E.12), the relation in (E.13) can

be written as

βacc,0i
0,k+1 = βacc,0

0,k −ΠB−1
0,kT0i,kBi,kΠ

Tβacc,i
i,k + ∆twacc,0

0,k −ΠB−1
0,kT0i,kBi,kΠ

T∆twacc,i
i,k (E.14)

≈ βacc,0i
0,k + ∆twacc,0

0,k −ΠB−1
0,kT0i,kBi,kΠ

T∆twacc,i
i,k , (E.15)

where the lattermost approximation is dependent on an assumption that ∆t is sufficiently
small. As ∆t → 0, it can be shown that B0,k → 1 and Bi,k → 1, meaning that the first two
components in (E.14) are approximately of the same form as the right-hand side in (E.13)
and can be combined into the relative acceleromer bias term βacc,0i

0,k . Perturbing (E.9), (E.10),
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and (E.15) is then straightforward.

E.3 Preintegration

The preintegration of the IMU measurements is also affected by the presence of IMU biases,
but is quite similar to the preintegration shown in Section 6.6. In the proposed preintegration
framework, each robot constructs its RMI by correcting the gyroscope measurements using
its own gyroscope bias estimate and inflating the uncertainty associated with the RMI based
on the uncertainty of the bias estimate. Nonetheless, each robot leaves the accelerometer
measurements uncorrected when constructing the RMI.

To derive this, first note that

T0i,m =

(
m−1∏

k=`

B0,k

)−1

T0i,`

m−1∏

k=`

Bi,k, (E.16)

meaning that the RMI constructed by Robot i is of the form

∆TB
i,`:m =

m−1∏

k=`

Bi,k ∈ DE2(3).

Therefore, (E.16) can be written as

T0i,m =

(
m−1∏

k=`

B0,k

)−1

T0i,`∆TB
i,`:m, (E.17)

which differs from the RMI in Section 6.6 in that the gyroscope measurements are corrected
using the Robot i’s estimate of its own gyroscope bias. Consequently, the RMI can be
updated iteratively as

∆TB
i,`:k+1 = ∆TB

i,`:kBi,k. (E.18)

As in Section 6.6, a perturbation of the form

∆TB
i,`:m = ∆T̄B

i,`:m Exp(δwB
i,`:m)

is defined for the RMI, and using (E.8), the perturbation of the RMI is given by

δwB
i,`:k+1 = Ad(B̄−1

i,k )δwB
i,`:k + LB

i,kδui,k − LB
i,kEδβgyr,i

i,k , (E.19)

where the last term reflects the increased uncertainty of the RMI associated with the uncer-



APPENDIX E. ADDRESSING IMU BIASES 170

tainty in the gyroscope bias estimate.
Lastly, the asynchronous-input filter shown in Section 6.6.3 can now be formulated for

bias-modelling applications. At time-steps where there is no communication with the neigh-
bour, the pose and bias process models are given by

T 0i,k+1 = B−1
0,kT0i,k, T 0i,k+1 ∈ DE2(3), (E.20)

βgyr,0
0,k+1 = βgyr,0

0,k + ∆twgyr,0
0,k , (E.21)

βacc,0i
0,k+1 = βacc,0i

0,k + ∆twacc,0
0,k −ΠB−1

0,kT0i,kΠ
T∆twacc,i

i,k . (E.22)

Meanwhile, at time-steps when Robot i sends the RMI ∆TB
i,`:m, the pose and bias process

models are given by

T0i,m = B−1
0,m−1T 0i,m−1∆TB

i,`:m, (E.23)

βgyr,0
0,m = βgyr,0

0,m−1 + ∆twgyr,0
0,m−1, (E.24)

βacc,0i
0,m = βacc,0i

0,m−1 + ∆twacc,0
0,m−1 −ΠB−1

0,m−1T 0i,m−1∆TB
i,`:mΠT∆twacc,i

i,m−1 (E.25)

These equations can then be perturbed in a manner similar to Section 6.6.3.

E.4 Simulation Results

Table E.1: Bias simulation parameters. Other simulation parameters remain unchanged from Table 6.1.

Specification Value

Accelerometer bias random walk std. dev. [m/s2] 1.58× 10−3

Gyroscope bias random walk std. dev. [rad/s] 2.5× 10−5

In order to validate the proposed framework in the presence of IMU biases, the same sim-
ulation runs as in Section 6.7 are repeated, but with the addition of IMU biases. The bias
simulation parameters are given in Table E.1. Given that neighbours use their own gyro-
scope bias estimates to correct their gyroscope measurement before constructing the RMI,
additional noise is added to the gyroscope bias true state of neighbours to simulate uncertain
gyroscope bias estimates. This is then used to correct the gyroscope measurements and to
inflate the RMI.

The results for Simulation S1 are shown in Figure E.1, where it can be seen that the
gyroscope and relative accelerometer biases estimated by the reference robot do converge
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Table E.2: The RMSE of Robot 0’s estimate of neighbouring robots’ relative pose for multiple experimental
trials, without offline bias correction.

Robot 1 Robot 2
Without Bias
Estimation
RMSE [m]

With Bias
Estimation
RMSE [m]

Without Bias
Estimation
RMSE [m]

With Bias
Estimation
RMSE [m]

Trial 1 0.785 0.404 0.723 0.410
Trial 2 1.232 0.828 0.902 0.615
Trial 3 0.916 0.548 0.649 0.413
Trial 4 1.282 0.753 0.853 0.638

to the true values. Additionally, Simulation S3 is run to assess the consistency of the pro-
posed estimator in the presence of IMU biases. The NEES plot for this simulation is shown
in Figure E.2, where it can be seen that the NEES values display a similar behaviour to
Figure 6.11, starting with weak observability and then converging towards consistency.

E.5 Experimental Results

The experimental results are also rerun with IMU bias estimation to validate the approach
proposed in this document. These results differ from the results presented in Section 6.8
in that the IMU biases are no longer initialized using the motion capture system, except
for the gyroscope biases of neighbouring robots to simulate neighbours running their own
estimator. The proposed framework presented in Chapter 6 is then compared to the one
presented here with IMU bias estimation, and it is shown that estimating biases in the
absence of bias initialization does indeed improve performance, as shown in Figure E.5 for
Trial 1 and in Table E.2 for all trials. Note that the bias error plots are not shown as the
true IMU bias is unknown. The performance with bias estimation is also comparable to the
performance of the estimator in Section 6.8 with bias initialization, but is in fact typically
worse probably due to the transient of the bias estimates before convergence, thus resulting
in more uncertain pose estimates during the earlier stages. It is expected that for longer
trajectories the performance of the estimator with bias estimation will be better than the
estimator in Chapter 6 with bias initialization, as the initial bias estimates becomes less
accurate with the progress of time.
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Figure E.1: Error plots and ±3σ bounds (shaded region) for Robot 0’s estimate of Robot 1’s relative pose,
its own gyroscope bias, and Robot 1’s relative accelerometer bias for Simulation S1.
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Figure E.3: Without bias estimation.
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Figure E.5: Error plots and ±3σ bounds (shaded region) for Robot 0’s estimate of Robot 1’s relative pose
for experimental trial 1, without offline bias correction.
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Appendix F

Deriving the Measurement Update

The conditional joint distribution of x1
k, x2

k, y1
k

∣∣I1
k−1, I2

k is assumed to be Gaussian according
to

N







x̌1
k

x̂2
k

y̌1
k


 ,




P̌1
k P̌1,2

k,k Σx̌1k y̌1k(
P̌1,2
k,k

)T P̂2
k Σx̂2k y̌1k

ΣT
x̌1k y̌1k

ΣT
x̂2k y̌1k

Σy̌1k y̌1k





 .

Using [43, Lemma A.2] to condition on y1
k as well, the conditional joint distribution of

x1
k, x2

k

∣∣I1
k , I2

k is given by

N
([

x̌1
k + Σx̌1k y̌1k

Σ−1
y̌1k y̌1k

(
y1
k − y̌1

k

)

x̂2
k + Σx̂2k y̌1k

Σ−1
y̌1k y̌1k

(
y1
k − y̌1

k

)
]
,

[
P̌1
k −Σx̌1k y̌1k

Σ−1
y̌1k y̌1k

ΣT
x̌1k y̌1k

P̌1,2
k,k −Σx̌1k y̌1k

Σ−1
y̌1k y̌1k

ΣT
x̂2k y̌1k(

P̌1,2
k,k

)T −Σx̂2k y̌1k
Σ−1

y̌1k y̌1k
ΣT

x̌1k y̌1k
P̂2
k −Σx̂2k y̌1k

Σ−1
y̌1k y̌1k

ΣT
x̂2k y̌1k

])
.

Using [43, Lemma A.2] again, and by replacing the conditioning on I2
k using x̂2

k

(
I2
k

)
and

P̂2
k

(
I2
k

)
as was done in Section 7.2, the distribution of x1

k|I1
k , x̂2

k, P̂2
k is given by

N
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+
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Therefore, the filter equations using a Bayesian approach are given by (7.10)-(7.14).
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Appendix G

Sigma Point-Based Covariance
Intersection

Consider the problem of fusing two estimates

x1 ∼ N
(

x̂1, P̂1
)
, (G.1)

x2 ∼ N
(

x̂2, P̂2
)
, (G.2)

of the same state vector x, where the cross-covariance matrix

P1,2 = E
[(

x− x̂1
) (

x− x̂2
)T] (G.3)

is unknown. One consistent way to obtain a state estimate x̂ with a covariance matrix P̂
by fusing x1 and x2 is the Covariance Intersection (CI) method [36], [135]. The core of this
approach is to disregard any cross-covariances by inflating the joint covariance matrices P̂1

and P̂2. Therefore, the assumed joint distribution between x1 and x2 is given by
[

x1

x2

]
∼ N

([
x̂1

x̂2

]
,

[
1
w

P̂1 0
0 1

1−w P̂2

])
, (G.4)

where w ∈ (0, 1) is a weighting parameter.
In Sections 7.4 and 7.5, a sigma point Covariance Intersection (SPCI) approach is used as

an alternative, less accurate solution to the proposed framework. The proposed framework
attempts to approximate the cross-covariance matrices, while CI inflates the joint covariances
matrices to avoid doing so. Therefore, designing a SPCI approach is similar to the proposed
framework. The state vectors x1

k−1 and x2
k−1 and the process noise w1

k−1 are augmented into
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Figure G.1: The RSME of the SPCI filter averaged over 50 different trajectories for different values of w,
showing best performance at w = 0.99.

one vector as in (7.15). The difference, however, is in the covariance matrix, which now is
of the form

P̂vk−1
=




1
w

P̂1
k−1 0 0

0 1
1−w P̂2

k−1 0
0 0 Q1

k−1


 (G.5)

instead of (7.16). Similarly, for the correction step, the new augmented state vector is of the
form (7.20) and the new covariance matrix is of the form

P̂uk =




1
w

P̌1
k 0 0

0 1
1−w P̌2

k 0
0 0 R1

k


 . (G.6)

One of the disadvantages of the Covariance Intersection method is that it requires tuning
of an additional scalar parameter, w. Usually, when the two vectors being fused are different
estimates of the same state vector, the weighting factors are the result of an optimization
approach that minimizes the trace or some other metric of the fused covariance matrix.
However, in the problem of cascaded filtering when state vectors being estimated are distinct,
the different units of the diagonal elements of the fused covariance matrix would mean this
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approach yields biased results. Another approach involves choosing the weighting parameters
and the Kalman gain to minimize the trace of the posterior covariance matrix, as in [40].
However, it is unclear how this approach could be utilized in a sigma point-based approach.
Therefore, the value of the weighting parameter w is tuned using Monte Carlo trials as shown
in Figure G.1, leading to the choice of w = 0.99.



Appendix H

Linearization-Based Approach

H.1 Proposed Linearization-Based Cascaded Receiving

Filter

In this section, a linearization-based approach is derived using the proposed framework.
Deriving a linearized model from a nonlinear system is standard, using a first-order Taylor
series approximation. Therefore, rather than considering a nonlinear system and addressing
its linearized counterpart, a discrete-time linear system of the form

x1
k = A1

k−1x1
k−1 + B1

k−1x2
k−1 + L1

k−1w1
k−1,

y1
k = C1

kx1
k + D1

kx
2
k + M1

kν
1
k,

x2
k = A2

k−1x2
k−1 + L2

k−1w2
k−1,

y2
k = C2

kx2
k + M2

kν
2
k,

will be considered for conciseness of notation, where

w1
k−1 ∼ N

(
0,Q1

k−1

)
, ν1

k ∼ N
(
0,R1

k

)
,

w1
k−2 ∼ N

(
0,Q2

k−1

)
, ν2

k ∼ N
(
0,R2

k

)
.

In what follows, the notation Ik = I1
k ∪ I2

k is used.

H.1.1 Prediction Step

When propagating from time-step k−1 to k, the state estimates x̂1
k−1, x̂2

k−1 and the covariance
matrices P̂1

k−1, P̂2
k−1, P̂1,2

k−1,k−1 are known. Therefore, the prediction step is straightforward,
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and is given by

x̌1
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where (expression)(·)T is used to denote (expression)(expression)T, and the assumptions

E
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are made. Finding P̌1,2
k,k from P̌1,2

k,k−1 then follows the approximation given in Section 7.3.3.

H.1.2 Correction Step

When correcting the predicted state at time-step k using measurements y1
k, the state esti-

mates x̌1
k, x̂2

k and the covariance matrices P̌1
k, P̂2

k, P̌1,2
k,k are known. The posterior distribution

of the states of the receiving filter, conditioned on the states of the feeding filter is derived
in Appendix F and Section 7.2. Based on this, a filter of the form (7.10)-(7.14) is given. The
analytical covariance terms Σx̌1k y̌1k

, Σx̂2k y̌1k
, Σy̌1k y̌1k

for the linear system are then derived to be
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where (expression)(·)T is used to denote (expression)(expression)T, and the assumptions
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are made.

H.2 Simulation Results

The nonlinear problem addressed in Section 7.4 will also be used here to evaluate the
linearization-based approach. To evaluate the different approaches, 500 Monte Carlo tri-
als with varying initial conditions and noise realizations are performed as in Section 7.4. A
summary of the results are given in Figure H.1 and Table H.1. The proposed sigma point
estimator achieves the best performance and beats both the linearization-based approach
and the SPCI. The linearization-based approach on average performs better than the SPCI
estimator. However, the presence of more significant outliers is possibly due to lineariza-
tion errors, while the SPCI approach considered here uses sigma points and does not suffer
from linearization errors. Even then, the SPCI is still on average outperformed by the sig-
nificantly less computationally complex linearization-based approach. A linearization-based
CI approach is possible, but is not considered as further approximations associated with
linearization are expected to provide worse results anyway.

A NEES test with 5% significance level is also performed to evaluate the consistency of
the proposed estimators. As seen in Figure H.2, and as per the theory validating the NEES
test, the hypothesis that the estimator is consistent cannot be rejected with 95% confidence.
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Table H.1: RMSE of the estimators averaged 500 trials.

Average % Diff.
RMSE to Full

Full - Position (m) 0.0487 -
Proposed: SP - Position (m) 0.0662 35.9%
Proposed: Lin. - Position (m) 0.0729 49.7%
SPCI - Position (m) 0.0862 77.0%
Naive - Position (m) 0.1733 256%
Full - Attitude (rad) 0.0190 -
AHRS - Attitude (rad) 0.0306 61.1%
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Naive SPKF

Covariance Intersection

Proposed: Linearization

Proposed: Sigma Point

Full Estimator

Figure H.1: A box plot showing the median RMSE, outliers, and variation
of different estimators over 500 Monte Carlo trials.
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Figure H.2: The NEES test results for the 500 Monte Carlo trials, showing
the consistency of both proposed estimators.
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Figure H.3: The position errors associated with the experimental run at a slow pace. The shaded region
corresponds to the ±3σ bound, and the colour of each error trajectory and covariance region are the same.

H.3 Experimental Results

The linearization-based approach is also tested on the slow-paced experimental run. The
error trajectory plots and corresponding ±3σ bounds are shown in Figure H.3. The proposed
linearization-based approach behaves similarly to the proposed sigma point approach, and as
is the case with the sigma point approach, it remains mostly within the bounds while being
less over-conservative than the SPCI approach. This can also be seen in Figure H.4, where
the KL divergence [114, Chapter 9] measure shows that the estimated distribution of the
linearization-based approach is much closer to the estimated distribution of the full estimator
when compared to the SPCI, which is the best available estimate of the true distribution.

The position RMSE of the proposed linearization-based approach is 0.23494 m, compared
to the proposed sigma point-based estimator’s of 0.23138 m and the full estimator’s of 0.21870
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Figure H.4: The logarithm of the KL divergence measure associated with the experimental run at a slow
pace. The KL divergence is computed between each cascaded estimator and the full estimator.

m. Both proposed approaches are similar to the performance of the full estimator, while the
linearization-based approach is slightly worse as linearization errors contribute to a slightly
less accurate estimated distribution, as shown in Figure H.4.
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