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Abstract— Ultra-Wideband (UWB) systems are becoming
increasingly popular for indoor localization, where range mea-
surements are obtained by measuring the time-of-flight of
radio signals. However, the range measurements typically suffer
from a systematic error or bias that must be corrected for
high-accuracy localization. In this paper, a ranging protocol
is proposed alongside a robust and scalable antenna-delay
calibration procedure to accurately and efficiently calibrate
antenna delays for many UWB tags. Additionally, the bias and
uncertainty of the measurements are modelled as a function
of the received-signal power. The full calibration procedure
is presented using experimental training data of 3 aerial
robots fitted with 2 UWB tags each, and then evaluated
on 2 test experiments. A localization problem is then for-
mulated on the experimental test data, and the calibrated
measurements and their modelled uncertainty are fed into an
extended Kalman filter (EKF). The proposed calibration is
shown to yield an average of 46% improvement in localiza-
tion accuracy. Lastly, the paper is accompanied by an open-
source UWB-calibration Python library, which can be found at
https://github.com/decargroup/uwb calibration.

I. INTRODUCTION

Robotic localization and mapping applications typically
require a means of acquiring position information relative
to a reference point with known location. Global Naviga-
tion Satellite System (GNSS) provides accurate and pre-
cise positioning information outdoors; however, localization
performance degrades significantly in obstructed or indoor
environments [1, 2]. An attractive indoor localization option
that has been increasingly gaining traction is the use of
ultra-wideband (UWB) radio signals between transceivers,
or tags, as a means of ranging. UWB transceivers, such as the
DWM1000 module provided by Decawave [3], are typically
inexpensive, consume little power, and provide a means for
data transfer between robots, thus deeming them particularly
useful for a variety of robotic applications [4–6].

UWB-based ranging typically relies on measuring the
time-of-flight (ToF) of radio signals from one tag to another.
This requires estimating the offset between the clock on each
tag. Furthermore, the clocks often run at different rates due
to physical imperfections in the individual clock’s crystal
oscillator, causing the offset to be time-varying. The rate
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Fig. 1: Timeline schematics for two tags i and j representing the different
TWR ranging protocols, where t` represents the `th timestamp for a TWR
instance and ∆t`k , t` − tk .

of change of the clock offset is referred to as the clock
skew. In order to negate the effect of the clock offset during
ranging, different ranging protocols have been proposed,
with the choice being dependent on the specific application
and availability of tags [7], [8, Section 7.1.4]. A commonly
used protocol is two-way ranging (TWR), which relies on
averaging out the measured ToF between two signals to
negate the clock offset. This form of TWR is referred to
as single-sided TWR (SS-TWR), and is shown in Figure 1a.

Nonetheless, even after correcting for clock offsets, UWB
range measurements typically suffer from a systematic error
or bias. A significant contributor to this error is the skew
between the clocks of the two ranging tags, as the different
tags measure the passage of time in different units [9, 10].
This additional bias can be corrected by estimating the clock
skew between the tags and embedding a skew-dependent
correction factor when computing the range measurement,
as proposed in [9]. However, this necessitates estimating
the clock skew between all tags involved in ranging. Al-
ternatively, [10] proposes a form of computing the range
measurement utilizing double-sided TWR (DS-TWR), which
is shown to mitigate clock-skew-dependent bias.

Another source of ranging bias stems from relative-pose-
dependent antenna radiation pattern [11], where pose refers
to both position and attitude. The varying signal strength
can cause timestamping errors, and this effect is typically
addressed using data-driven models. In [12], a simple ex-
periment with pre-localized fixed tags or anchors is used to
determine a relation between bias and the distance between
ranging tags, while in [13], models are trained using the
distance between the tags and 7 features extracted from the
channel impulse response (CIR). In [14] and [15], a robot
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is flown around in a room with UWB anchors to learn a
model of the range bias as a function of the robot’s pose.
The main drawback of these methods is that the learned
model is dependent on the relative poses of the ranging tags,
which are typically unknown in real-time without the bias-
corrected measurements in the first place. Additionally, the
learnt models are trained and tested on the same anchor
formations and are therefore not necessarily generalizable;
calibration must occur for every new anchor formation. In
[9], the former issue is addressed by finding a relation
between the bias and the received first-path power (FPP)
in line-of-sight (LOS) conditions with 2D motion.

Delays in communication between the embedded mi-
crochip and the UWB antenna are another source of bias
[16]. This antenna delay is roughly the same for different
UWB tags with the same physical design and is at least a
few hundreds of nanoseconds [16], but can vary tenths of a
nanosecond or more from tag to tag due to manufacturing
inaccuracies. Given that a one-nanosecond timestamping
error corresponds to 30 cm in ranging error, the need to
perform antenna-delay calibration for every tag is critical. In
[16], a basic TWR-based calibration procedure is suggested
for calibrating antenna delays. However, the lack of motion
introduces a risk of learning the aforementioned relative-
pose-dependent bias as antenna delays. In [9], experiments
involving a pair of tags at a time ranging with each other is
used to fit what is referred to as a “pair-dependent constant”.
Therefore, the calibration procedure involves calibrating the
relative delay between one pair at a time, which does not
scale well to systems with many UWB tags.

This paper addresses the problem of calibrating UWB tags,
and the main contributions are as follows.

• An alternative DS-TWR protocol is proposed and is
shown to mitigate the clock-skew-induced bias.

• A scalable antenna-delay calibration algorithm is pre-
sented that is robust to outliers and pose-dependent bias.

• The bias-versus-FPP fit presented in [9] is extended to
also address the uncertainty of the measurements as a
function of FPP, and DS-TWR is utilized to overcome
the need to estimate the clock skew.

• The proposed antenna-delay and bias-FPP calibration
are evaluated on an aerial experiment with no anchors,
where all the tags are fitted to moving robots.

• The code for the full calibration procedure
is attached to this paper as an open-access
online repository, which can be found at
https://github.com/decargroup/uwb calibration.

The remainder of this paper is organized as follows. The
proposed DS-TWR is discussed in Section II, alongside a
theoretical analysis of the clock-skew-dependent bias. In
Section III, a robust antenna-delay calibration algorithm is
presented, followed by the bias and uncertainty calibration
as a function of FPP in Section IV. The calibration methods
presented in Sections III and IV are introduced on the same
experimental training data, and are then evaluated on 2
testing experiments in Section V.

II. THE RANGING PROTOCOL

UWB ranging relies on the time-of-flight (ToF) of signals
between two tags in order to compute range measurements.
The simplest way to do this is using SS-TWR, shown in
Figure 1a, where the ToF measurement can be computed as

tf =
1

2
(∆t41 −∆t32). (1)

However, different UWB tags have differrent clocks that
are typically running at different rates, and this clock skew
results in additional bias in the computed ToF measurement.
In [10], an alternative DS-TWR-based ranging protocol is
proposed to mitigate clock-skew-dependent bias. In this
paper, the DS-TWR protocol shown in Figure 1b is proposed,
which differs from [10] by having the responding tag instead
of the initiating tag transmit the third signal. The ToF
measurement can then be computed as

tf =
1

2

(
∆t41 −

∆t64

∆t53
∆t32

)
. (2)

This protocol is motivated by the intuitive understanding that
the additional correcting factor in (2) transforms ∆t32 from
time units of the receiver tag’s clock to time units of the ini-
tiator tag’s clock. Additionally, the proposed ranging protocol
allows the initiating tag to process the range measurement
by computing (2), without requiring additional signals for
the responding tag to send ∆t32 and ∆t53.

A. Analytical Bias Model
To demonstrate clock-skew-dependent bias, consider in

SS-TWR the clock-skew-corrupted ToF measurement,

t̃ssf =
1

2
((1 + γi)(∆t41 + η41)− (1 + γj)(∆t32 + η32)) ,

(3)
where γi is the skew of Tag i’s clock relative to real
time, ηk` = ηk − η`, and ηk, η` ∼ N (0, R) are mutually-
independent timestamping white noise associated with times-
tamps tk and t`, respectively. The ToF error is thus

ess , t̃ssf − tf
=

1

2
(γi∆t41 + (1 + γi)η41 − γj∆t32 − (1 + γj)η32) ,

(4)

and the expected value of ess is

E [ess] =
1

2
(γi∆t41 − γj∆t32)

(1)
=

1

2
(γi(2tf + ∆t32)− γj∆t32)

= γitf +
1

2
(γi − γj) ∆t32. (5)

The first component of (5) is negligible as skew is in the
order of parts-per-million and ToF in nanoseconds. However,
∆t32 is typically in hundreds of microseconds, meaning that
clock-skew-dependent bias is not negligible.

Negating the second component of (5) is the motivation
behind the proposed ranging protocol. Rewriting (2) as

tf =
∆t41∆t53 −∆t64∆t32

2∆t53
,
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and following the same steps as in (3)-(4), the ToF error for
the proposed DS-TWR can be derived to be approximately

eds , t̃ds
f − tf

≈ γitf +
1

2
(1 + γi)

[
∆t32

∆t53
(η53 − η64) + η41 − η32

]
,

(6)
where t̃ds

f is the clock-skew-corrupted time-of-flight mea-
surement. Deriving (6) relies on the assumptions that
∆t53 � ‖η53‖, ∆t32 � ‖η32‖. This is expected since the
timestamping error is typically in the order of nanoseconds
or less, and the delay intervals are in the order of hundreds
of microseconds. The expected value of the error is therefore

E
[
eds
]

= γitf ,

which suffers from less bias when compared to the error of
the SS-TWR protocol.

III. ANTENNA-DELAY CALIBRATION

The delay between a chip timestamping transmission and
the antenna actually transmitting the signal is referred to as
the antenna transmission delay dt, while the delay between
an antenna receiving a signal and the chip timestamping
reception is the antenna reception delay dr. Looking back
at Figure 1b, the measured time-stamps are therefore

t̃k = tk + dt, k ∈ {1, 3, 5}, (7)

t̃` = t` + dr, ` ∈ {2, 4, 6}. (8)

In this section, a scalable antenna-delay calibration proce-
dure is presented that addresses the need for incorporating
motion. In particular, a linear least-squares approach is
presented utilizing DS-TWR, which is solved using robust
least squares to accommodate for outliers [17, Section 5.3.2].
Both the antenna delays and the presented approach are
environment independent, and therefore the antenna-delay
calibration only needs to be performed once for new un-
calibrated transceivers.

A. Least Squares Formulation

The goal of antenna-delay calibration is to find the best-
fit delays based on some collected data. In order to perform
this calibration procedure, the tags to be calibrated must be
capable of DS-TWR. The effect of antenna delays on the
DS-TWR ToF measurements is shown by substituting (7)
and (8) into (2), thus yielding

tf =
1

2

(
∆t̃41 + dt

i − dr
i︸ ︷︷ ︸

di

−∆t̃64

∆t̃53

(
∆t̃32−dt

j + dr
j︸ ︷︷ ︸

−dj

))
(9)

when Tag i initiates with Tag j, where dt
i and dr

i are the
antenna transmission and reception delays of Tag i, respec-
tively. In this case, transmission and reception delays can
be combined into one delay variable di to be estimated for
every tag, where di = dt

i − dr
i . This is sufficient for systems

where only TWR is utilized, which is the focus of this paper.
When other ranging protocols are implemented such as
time-difference-of-arrival (TDoA) or time-of-arrival (ToA),

(a) Quadcopter equipped with
two UWB tags.

(b) Snapshot from training experiment.

Fig. 2: Experimental set-up for antenna-delay and bias-FPP calibration.

another antenna-delay calibration procedure is necessary to
solve for dt

i and dr
i separately.

In the presence of n tags to be calibrated, let P denote
the ordered set of tuples representing all ranging pairs of
tags. Consequently, the antenna delays are calibrated by
formulating a linear least-squares problem as

d̂ = arg min
d∈Rn

∑

(i,j)∈P

mij∑

k=1

g
(
ekij(d)

)
, (10)

where the error ekij is defined from (9) as

ekij(d) =
1

2
(di +Kkdj)− tkf +

1

2
(∆t̃k41 −Kk∆t̃k32),

mij is the number of range measurements between Tags i
and j, d =

[
d1 · · · dn

]T
, the superscript k denotes the kth

measurement, and Kk , ∆t̃k64/∆t̃
k
53. Moreover, g is the loss

function, and the choice of g is discussed in Section III-B.
If n = 2, the formulated least-squares problem would have

2 unknowns and only 1 pair of ranging tags, which results
in non-uniqueness of the solution. Therefore, the calibration
procedure should involve at least 3 tags, yielding 3 unknowns
and 3 pairs of ranging tags.

B. Experimental Results on Training Data

To evaluate the proposed antenna-delay calibration pro-
cedure experimentally, three Uvify IFO-S quadcopters are
equipped with 2 UWB tags each as shown in Figure 2a, for
a total of 6 tags. In order to compute the theoretical ToF
tf for any measurement to formulate a similar problem to
(10), a motion-capture system is used to get the ground truth
distances between the ranging tags. A motion-capture system
is chosen for its mm-accuracy, but any other localization
approach would suffice, with the accuracy of the calibration
depending on the accuracy of the localization algorithm.
Unlike the static experiments suggested in [16], this allows a
dynamic experiment where the quadcopters fly randomly in
3-dimensional space as shown in Figure 2b, which reduces
the proneness to learning relative-pose-dependent biases.
This dataset consists of 4 minutes of flight time and a total
of 38000 range measurements. The calibration procedure can
be done by fitting each drone with one tag, but it is common
in localization problems to fit two tags to overcome the lack
of bearing information [5, 18, 19]. Nonetheless, the ranging
schedule does not directly involve TWR measurements be-
tween any two tags on the same drone. Therefore, there are
6 unknown delays and 12 pairs of ranging tags.

Typically, problems of the form (10) are solved by finding
d that minimizes the squared error (i.e., choosing g to be
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Fig. 3: Histograms showing the effect on the ranging bias post-antenna-delay
calibration. (Top) Using L2 loss. (Bottom) Using Cauchy loss.

L2 loss), which is derived from an assumption that the
underlying distribution of the noise is Gaussian. However,
UWB measurements suffer from positive outliers due to
multipath propagation and other sources of error, and are
better modelled using Cauchy distributions [20]. It is there-
fore proposed for this particular application to minimize the
Cauchy loss g(x) = log

(
0.5x2 + 1

)
instead to solve (10)

while reducing the effect of outliers [17, Section 5.3.2].
The use of the Cauchy loss is found to be useful for

mitigating the effect of positive outliers as the mode of the
bias distribution becomes 0, as shown in Figure 3. Moreover,
the precision of the proposed approach is evaluated by
comparing antenna-delay solutions derived from 2 datasets
collected one month apart, and the delays converge to the
same result within 0.03 ns of accuracy, which corresponds
to less than 1 cm of ranging error.

C. Using Calibrated Tags to Calibrate New Tags

In [9], the sum of the antenna delays for every pair of
tags (i, j) is calibrated as one constant cij , which for the
DS-TWR protocol would be of the form cij = di + Kdj .
This approach requires that calibration is done for every pair
of tags, which is tedious and not scalable. That is due to the
fact that lumping the delay terms into one constant fails to
utilize the constant delay terms that appear in different pairs.

By solving for the aggregate antenna delays di and dj indi-
vidually, this allows calibrating a new tag without collecting
data between the new tag and all previously calibrated tags.
In order to calibrate a new tag Tag j, only one calibrated tag
Tag i is required, which then allows solving for dj from (9),

d̂j =
2tf −∆t̃41 − d̂i

K
+ ∆t̃32.

However, it is still recommended to collect more data using
a dynamic experiment with the two tags in order to improve
robustness to noise and pose-dependent bias.

IV. POWER-CORRELATED CALIBRATION

Another source of error in UWB-based ranging is irreg-
ularities in the antenna radiation pattern and system design
elements, such as PCB-induced losses. Typically, such losses
introduce biases in the measurements that are pose-dependent
and that are correlated with the received signal power [9,

11]. In this section, the experiments in [9] are extended in
the following ways.

1) The proposed DS-TWR is used rather than SS-TWR,
which overcomes the need to estimate the skew be-
tween all pairs of tags.

2) The results are shown to hold for experiments in three-
dimensional space.

3) The results are shown to hold for experiments with
some non-LOS measurements due to occlusions from
the quadcopters’ bodies.

4) The individual measurements are used in the data-
fitting process rather than averaging out measurements
from a discrete number of relative poses.

The last point is particularly important as it overcomes the
need to remain static during data collection, which allows the
calibration procedure to be a simple experiment of robots
moving randomly and covering as many relative poses as
possible in a relatively short period of time. Another advan-
tage of using all the data in the calibration process is that
there is no loss of variance information through averaging out
similar measurements. Consequently, the relation between
the variance of the measurements and the received signal
power can then be analyzed.

A. Bias Calibration

The bias calibration procedure is similar to the one pre-
sented in [9]. The reception timestamp at Tag i is usually
corrupted by an unknown function ρi(·) of the received FPP
pf ; therefore, from (2),

tf =
1

2

(
∆t̃41 + ρi

(
pf

4

)

− ∆t̃64

∆t̃53 + ρi
(
pf

6

)
− ρi

(
pf

4

) (∆t̃64 − ρj
(
pf

2

)) )

(a)≈ 1

2

(
∆t̃41 −

∆t̃64

∆t̃53

∆t̃64

)
+

1

2

(
ρi
(
pf

4

)
+ ρj

(
pf

2

))

,
1

2

(
∆t̃41 −

∆t̃64

∆t̃53

∆t̃64

)
+ f

(
Ψ

(
pf

4 + pf
2

2

))
, (11)

where pf
i is the FPP associated with timestamp ti, and

Ψ(x) , 10(x−α)/10 is the lifting function suggested in [9]
with α as a normalization parameter. Moreover, f(·) is an
unknown function to be learned from data, defined based
on an experimentally-motivated assumption that the effects
of power-correlated bias due to the individual tags can be
aggregated into one function of the average received FPP that
is common to all tags of similar design. The step (a) in the
derivation involves the assumptions that ρi

(
pf

6

)
= ρi

(
pf

4

)

and ∆t̃64
∆t̃53

ρj
(
pf

2

)
≈ ρj

(
pf

2

)
. The former assumption is due

to the fact that the motion of the robots is negligible in the
time window ∆t64 and therefore the relative-pose between
the two tags is similar, while the later assumption is due
to ρj

(
pf

2

)
being in the order of tenths of nanoseconds, and

therefore
(

1− ∆t̃64
∆t̃53

)
ρj
(
pf

2

)
≈ 0.

Referring back to the experiment mentioned in Section III,
the function f is learned by simply fitting a spline to the
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Fig. 4: The fitted bias and standard deviation curves as a function of the
lifted average FPP, using a 4-minute long training experiment.

post-antenna-delay-calibration range bias as a function of the
lifted average FPP. The result is shown at the top of Figure 4
for all individual pairs as well as for all the data, where
the ToF bias is converted to range bias. As expected, when
the antenna delay is corrected first, the bias-power curve is
similar for all pairs as they all use the same antenna and
PCB-board design. In this case, this additional calibration
procedure can remove up to 10 cm of bias, but even though
this calibration procedure is environment independent [9],
this would vary for different tag designs and this process
must be done separately for different antenna/board designs.

B. Variance Calibration

The variance of the measurements is also expected to vary
as a function of the received-signal power, that is,

E[(t̃f − tf)2] , σ

(
Ψ

(
pf

4 + pf
2

2

))2

.

Intuitively, it is expected that the receiver should be able to
detect and timestamp the direct-path signal more accurately
when the FPP is high as this indicates a high signal-to-noise
ratio (SNR). Additionally, multipath and obstacle-attenuated
signals typically have lower FPP, and therefore not a lot of
variance is expected at higher received FPP. At lower re-
ceived FPP, the SNR is lower, and the received measurements
might have been corrupted with equally-powerful multipath
and body-attenuated signals.

In order to analyze this experimentally using the training
data, a similar procedure to the power-bias calibration step
is proposed. The standard-deviation samples are generated
by computing the standard deviation of the range bias of
the measurements in a window of FPP. A spline is fitted to
the standard-deviation samples, and the resulting curves are
shown at the bottom of Figure 4. As expected, the lowest
standard deviation is at the highest FPP, where the standard
deviation of the range bias is as low as 2.5 cm. Additionally,
the highest standard deviation of approximately 17 cm is in
the mid-FPP region. This is potentially due to reflections off
the ground being primarly in this region.

Even though there is a clear trend, the standard deviation
curves appear to somewhat vary between different pairs. This
is partly due to the training experiment being relatively short,

0

2

4

6

−0.2 0.0 0.2 0.4 0.6
Range Bias [m]

0

2

4

6

Raw Antenna-Delay Calibrated Fully Calibrated

Fig. 5: Distribution of the testing-data range bias pre- and post-calibration,
with collection bins indicating the amount of outliers beyond the axes.

and at some FPP values there is not enough data points
to accurately compute the standard deviation. Additionally,
despite the curve seeming to slope downwards at lower FPP
values, it is expected that at some point as the received
FPP value decreases beyond the lower detection threshold
the variance will increase drastically. However, the lower
detection threshold is chosen to be higher than the point
where random meaningless signals would be detected, and
therefore the point where the variance increases significantly
does not appear in the recorded experiment.

V. EXPERIMENTAL RESULTS ON TESTING DATA

The proposed calibration procedure from Sections III and
IV is evaluated on 2 testing experiments with the same set-up
as the training experiment presented in Section III-B. While
in the training experiment the quadcopters follow a more
structured trajectory, the testing experiments involve the
quadcopters flying around the 3-dimensional space randomly.
Each testing experiment consists of 60 seconds of flight time
and 10000 range measurements between the 12 pairs.

A. Bias Correction

The distributions of the resulting biases in the testing data
pre- and post-calibration are shown in Figure 5. The mean of
the bias of the raw measurements is reduced by 36% through
antenna-delay calibration only and by a further 20% by fully
calibrating the measurements, bringing the mean from 11.11
cm to 5.91 cm. The standard deviation of the measurements
is barely affected by antenna-delay calibration, but is reduced
approximately 6% through power-correlated calibration from
18.95 cm to 17.82 cm. Both the mean and standard deviation
are affected by positive outliers potentially resulting from
non-LOS and multipath propagation.

In order to reject outliers, the underlying distribution must
be known. Through the variance calibration procedure, the
range measurements are assumed to be corrupted with zero-
mean Gaussian noise with a standard deviation given by (12).
An outlier can be rejected if it does not satisfy the underlying
distribution with a certain degree of confidence. For each
individual measurement k with ground-truth-computed bias
bk and power-correlated standard deviation σk from (12),
this can be done by performing the chi-squared test [21,
Section 1.4.17]. Any measurement that does not satisfy the
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calibration, with some statistical information.

inequality b2k
σ2
k
≤ γ indicates that it is not from the underlying

distribution to a certain degree of confidence. The threshold γ
depends on the chosen degree of confidence, typically 95%.

The results of this standard outlier-rejection algorithm are
shown in Figure 6. An indication of the calibrated variance
being close to the actual underlying distribution would be
that exactly 5% of measurements are rejected; however, due
to other factors such as non-LOS and multipath propagation,
more than 5% of measurements are rejected for some pairs.
Even in this non-ideal scenario with non-LOS and multipath,
the mean of the measurements after outlier rejection among
all pairs reduces to a maximum of roughly 4 cm and a
maximum standard deviation of approximately 8 cm.

B. Position Estimator

In real-world applications, the ground truth distance be-
tween tags is usually not known but is rather estimated,
and the outlier rejection method is usually done using
the normalized-innovation-squared (NIS) test [21, Section
5.4.2]. The NIS test is similar to the chi-squared test men-
tioned in Section V-A, but additionally accommodates for
uncertainty in the state estimates.

To evaluate the variance calibration using the NIS test, the
following simple localization problem is formulated using
the testing data. Consider the problem of estimating r1w

a , the
position of Robot 1 relative to some arbitrary reference point
w, resolved in some inertial frame Fa. There are two tags on
the robot, and ri11 represents the position of Tag i relative to
the robot’s reference point in the robot’s own body frame F1,
which can be measured manually. Additionally, assume that
the orientation of the robot given by a direction cosine matrix
C1a ∈ SO(3) is known, and that velocity measurements
v1w
a are available from the motion-capture system. Assuming

that poses and tag positions of the neighbouring robots n ∈
{2, 3} are known, an extended Kalman filter (EKF) is used
to estimate r1w

a , where the measurements are modelled as

y =
∥∥r1w
a + CT

1ari11 − rnwa − CT
narjnn

∥∥+ ν

for the range measurement between Tag i on Robot 1 and
Tag j on Robot n, and ν ∼ N (0, R) is white Gaussian noise.
The NIS test is used in the filter for outlier rejection.

The performance of the filter is shown based on the root-
mean-squared-error (RMSE) metric in Figure 7 for one
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Fig. 7: Comparison of the position-estimate RMSE using raw and calibrated
data for one testing-data scenario.

TABLE I: RMSE comparison for the raw and calibrated measurements in
all 6 testing-data scenarios.

RMSE [m]
Robot

no. Raw Calibrated Calibrated
w/ Variance

Experiment 1
1 0.9245 0.5122 0.4243
2 0.7577 0.5095 0.4437
3 0.6731 0.3872 0.3467

Experiment 2
1 0.8664 0.4879 0.4932
2 0.8174 0.5854 0.3980
3 0.7837 0.5167 0.4788

experimental run and summarized in Table I for 6 different
scenarios using 1) the raw measurements and fixed variance,
2) the calibrated measurements and fixed variance, and 3) the
calibrated measurements and the calibrated variance-power
curve. The 6 scenarios represent a variation of which of
the three robots is the one with an unknown position to
be estimated, and doing so in two different experimental
runs. The choice of fixed measurement variance is decided
experimentally based on what consistently yields the best
performance. On average for the 6 different scenarios, the
antenna-delay and bias-calibration procedures alone yield
a 38% improvement in localization accuracy, while addi-
tionally utilizing the power-correlated variance calibration
results in an average of 46% reduction in the RMSE, thus
emphasizing the importance of calibrating UWB sensors and
the added benefit of using the received FPP as an indication
of the uncertainty of measurements.

VI. CONCLUSION

In this paper, the problem of calibrating UWB bias is
addressed. To eliminate the need for estimating the clock
states, a DS-TWR-based ranging protocol is presented and
shown to theoretically mitigate the effect of clock-skew-
dependent bias. Furthermore, a robust and scalable antenna-
delay calibration procedure is presented and trained on data
from an aerial experiment. A model is then learnt on the
experimental data to find the relation between the remaining
bias and the uncertainty of the measurements as a function
of the received-signal power. The delays and models learnt
are then applied to two testing experiments to evaluate the
calibration procedure. A localization problem is then formu-
lated using an EKF, and it is shown that an average of 46%
improvement in localization accuracy can be achieved by
using the corrected measurements and the modelled variance.
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